Kelvin probe force microscopy (KPFM) is a widely used technique to map surface potentials at the nanometer scale. In traditional KPFM, a feedback loop regulates the DC bias applied between a sharp conductive probe and a sample to nullify the electrostatic force (closed-loop operation). In comparison, open-loop techniques such as dual harmonic KPFM (DH-KPFM) are simpler to implement, are less sensitive to artefacts, offer the unique ability to probe voltage sensitive materials, and operate in liquid environments. Here, we directly compare the two techniques in terms of their bandwidth and sensitivity to instrumentation artefacts. Furthermore, we introduce a new correction for traditional KPFM termed “setpoint correction,” which allows us to obtain agreement between open and closed-loop techniques within 1%. Quantitative validation of DH-KPFM may lead to a wider adoption of open-loop KPFM techniques by the scanning probe community.

1.
C.
Sommerhalter
,
T. W.
Matthes
,
T.
Glatzel
,
A.
Jäger-Waldau
, and
M. C.
Lux-Steiner
, “
High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy
,”
Appl. Phys. Lett.
75
,
286
288
(
1999
).
2.
U.
Zerweck
,
C.
Loppacher
,
T.
Otto
,
S.
Grafström
, and
L. M.
Eng
, “
Accuracy and resolution limits of Kelvin probe force microscopy
,”
Phys. Rev. B
71
,
125424
(
2005
).
3.
H.
Sugimura
,
Y.
Ishida
,
K.
Hayashi
,
O.
Takai
, and
N.
Nakagiri
, “
Potential shielding by the surface water layer in Kelvin probe force microscopy
,”
Appl. Phys. Lett.
80
,
1459
1461
(
2002
).
4.
S.
Barbet
 et al., “
Cross-talk artefacts in Kelvin probe force microscopy imaging: A comprehensive study
,”
J. Appl. Phys.
115
,
144313
(
2014
).
5.
C. B.
Jacobs
 et al., “
UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing
,”
Sci. Rep.
7
,
6053
(
2017
).
6.
S. V.
Kalinin
and
D. A.
Bonnell
, “
Local potential and polarization screening on ferroelectric surfaces
,”
Phys. Rev. B
63
,
125411
(
2001
).
7.
L.
Collins
 et al., “
Open loop Kelvin probe force microscopy with single and multi-frequency excitation
,”
Nanotechnology
24
,
475702
(
2013
).
8.
M.
Nonnenmacher
,
M. P.
O’Boyle
, and
H. K.
Wickramasinghe
, “
Kelvin probe force microscopy
,”
Appl. Phys. Lett.
58
,
2921
2923
(
1991
).
9.
O.
Takeuchi
,
Y.
Ohrai
,
S.
Yoshida
, and
H.
Shigekawa
, “
Kelvin probe force microscopy without bias-voltage feedback
,”
Jpn. J. Appl. Phys., Part 1
46
,
5626
(
2007
).
10.
N.
Kobayashi
,
H.
Asakawa
, and
T.
Fukuma
, “
Nanoscale potential measurements in liquid by frequency modulation atomic force microscopy
,”
Rev. Sci. Instrum.
81
,
123705
(
2010
).
11.
N.
Kobayashi
,
H.
Asakawa
, and
T.
Fukuma
, “
Quantitative potential measurements of nanoparticles with different surface charges in liquid by open-loop electric potential microscopy
,”
J. Appl. Phys.
110
,
044315
(
2011
).
12.
N.
Kobayashi
,
H.
Asakawa
, and
T.
Fukuma
, “
Dual frequency open-loop electric potential microscopy for local potential measurements in electrolyte solution with high ionic strength
,”
Rev. Sci. Instrum.
83
,
033709
(
2012
).
13.
S.
Guo
,
S. V.
Kalinin
, and
S.
Jesse
, “
Half-harmonic Kelvin probe force microscopy with transfer function correction
,”
Appl. Phys. Lett.
100
,
063118
(
2012
).
14.
S.
Guo
,
S. V.
Kalinin
, and
S.
Jesse
, “
Open-loop band excitation Kelvin probe force microscopy
,”
Nanotechnology
23
,
125704
(
2012
).
15.
L.
Collins
 et al., “
Dual harmonic Kelvin probe force microscopy for surface potential measurements of ferroelectrics
,” in
Applications of Ferroelectrics held jointly with 2012 European Conference on the Applications of Polar Dielectrics and 2012 International Symp Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (ISAF/ECAPD/PFM), 2012 Intl Symp 1–4
(
IEEE
,
2012
).
16.
L.
Collins
 et al., “
Dual harmonic Kelvin probe force microscopy at the graphene–liquid interface
,”
Appl. Phys. Lett.
104
,
133103
(
2014
).
17.
L.
Collins
 et al., “
Probing charge screening dynamics and electrochemical processes at the solid–liquid interface with electrochemical force microscopy
,”
Nat. Commun.
5
,
3871
(
2014
).
18.
Q.
Li
 et al., “
Switching spectroscopic measurement of surface potentials on ferroelectric surfaces via an open-loop Kelvin probe force microscopy method
,”
Appl. Phys. Lett.
101
,
242906
(
2012
).
19.
L.
Collins
 et al., “
Full data acquisition in Kelvin probe force microscopy: Mapping dynamic electric phenomena in real space
,”
Sci. Rep.
6
,
30557
(
2016
).
20.
L.
Collins
 et al., “
G-mode magnetic force microscopy: Separating magnetic and electrostatic interactions using big data analytics
,”
Appl. Phys. Lett.
108
,
193103
(
2016
).
21.
S.
Yoshida
 et al., “
Tip-induced band bending and its effect on local barrier height measurement studied by light-modulated scanning tunneling spectroscopy
,”
e-J. Surf. Sci. Nanotechnol.
4
,
192
196
(
2006
).
22.
C.
Sommerhalter
and
T.
Glatzel
, “
Kelvin probe force microscopy in ultra high vacuum using amplitude modulation detection of the electrostatic forces
,”
Appl. Surf. Sci.
157
,
263
268
(
2000
).
23.
A. L.
Domanski
 et al., “
Kelvin probe force microscopy in non-polar liquids
,”
Langmuir
28
,
13892
(
2012
).
24.
K.
Umeda
 et al., “
Practical aspects of Kelvin-probe force microscopy at solid/liquid interfaces in various liquid media
,”
J. Appl. Phys.
116
,
134307
(
2014
).
25.
K.
Honbo
 et al., “
Visualizing nanoscale distribution of corrosion cells by open-loop electric potential microscopy
,”
ACS Nano
10
,
2575
2583
(
2016
).
26.
H. O.
Jacobs
,
H. F.
Knapp
, and
A.
Stemmer
, “
Practical aspects of Kelvin probe force microscopy
,”
Rev. Sci. Instrum.
70
,
1756
(
1999
).
27.
H.
Diesinger
,
D.
Deresmes
, and
T.
Mélin
, “
Capacitive crosstalk in AM-mode KPFM
,” in
Kelvin Probe Force Microscopy
(
Springer Science + Business Media
,
2012
).
28.
T.
Mélin
,
S.
Barbet
,
H.
Diesinger
,
D.
Théron
, and
D.
Deresmes
, “
Note: Quantitative (artifact-free) surface potential measurements using Kelvin force microscopy
,”
Rev. Sci. Instrum.
82
,
036101
(
2011
).
29.
Y.
Wu
and
M. A.
Shannon
, “
AC driving amplitude dependent systematic error in scanning Kelvin probe microscope measurements: Detection and correction
,”
Rev. Sci. Instrum.
77
,
043711
(
2006
).
30.
A.
Liscio
,
V.
Palermo
,
K.
Müllen
, and
P.
Samorì
, “
Tip–sample interactions in Kelvin probe force microscopy: Quantitative measurement of the local surface potential
,”
J. Phys. Chem. C
112
,
17368
17377
(
2008
).
31.
D. S. H.
Charrier
,
M.
Kemerink
,
B. E.
Smalbrugge
,
T.
de Vries
, and
R. A. J.
Janssen
, “
Real versus measured surface potentials in scanning Kelvin probe microscopy
,”
ACS Nano
2
,
622
626
(
2008
).
32.
A.
Efimov
and
S. R.
Cohen
, “
Simulation and correction of geometric distortions in scanning Kelvin probe microscopy
,”
J. Vac. Sci. Technol., A
18
,
1051
(
2000
).
33.
K.
Okamoto
,
Y.
Sugawara
, and
S.
Morita
, “
The elimination of the “artifact” in the electrostatic force measurement using a novel noncontact atomic force microscope/electrostatic force microscope
,”
Appl. Surf. Sci.
188
,
381
385
(
2002
).
34.
M.
Lee
,
W.
Lee
, and
F. B.
Prinz
, “
Geometric artefact suppressed surface potential measurements
,”
Nanotechnology
17
,
3728
(
2006
).
35.
L.
Polak
,
S.
de Man
, and
R. J.
Wijngaarden
, “
Note: Switching crosstalk on and off in Kelvin probe force microscopy
,”
Rev. Sci. Instrum.
85
,
046111
(
2014
).
36.
L.
Kou
 et al., “
Surface potential imaging with atomic resolution by frequency-modulation Kelvin probe force microscopy without bias voltage feedback
,”
Nanotechnology
26
,
195701
(
2015
).
37.
L.
Collins
,
J. I.
Kilpatrick
,
S. V.
Kalinin
, and
B. J.
Rodriguez
, “
Towards nanoscale electrical measurements in liquid by advanced KPFM techniques: A review
,”
Rep. Prog. Phys.
81
,
086101
(
2018
).
38.
O.
Vatel
and
M.
Tanimoto
, “
Kelvin probe force microscopy for potential distribution measurement of semiconductor devices
,”
J. Appl. Phys.
77
,
2358
(
1995
).
39.
H.-J.
Butt
and
M.
Jaschke
, “
Calculation of thermal noise in atomic force microscopy
,”
Nanotechnology
6
,
1
7
(
1999
).
40.
C. A. J.
Putman
,
B. G.
De Grooth
,
N. F.
Van Hulst
, and
J.
Greve
, “
A detailed analysis of the optical beam deflection technique for use in atomic force microscopy
,”
J. Appl. Phys.
72
,
6
12
(
1992
).
41.
L.
Collins
 et al., “
Quantitative 3D-KPFM imaging with simultaneous electrostatic force and force gradient detection
,”
Nanotechnology
26
,
175707
(
2015
).
42.
Y.
Lo
,
N.
Huefner
,
W.
Chan
, and
P.
Dryden
, “
Organic and inorganic contamination on commercial AFM cantilevers
,”
Langmuir
15
,
6522
6526
(
1999
).
43.
E.
Bonaccurso
and
G.
Gillies
, “
Revealing contamination on AFM cantilevers by microdrops and microbubbles
,”
Langmuir
20
,
11824
11827
(
2004
).
44.
Y.
Kim
 et al., “
Nonlinear phenomena in multiferroic nanocapacitors: Joule heating and electromechanical effects
,”
ACS Nano
5
,
9104
9112
(
2011
).
45.
B. J.
Rodriguez
,
C.
Callahan
,
S. V.
Kalinin
, and
R.
Proksch
, “
Dual-frequency resonance-tracking atomic force microscopy
,”
Nanotechnology
18
,
475504
(
2007
).
46.
S.
Jesse
,
S. V.
Kalinin
,
R.
Proksch
,
A. P.
Baddorf
, and
B. J.
Rodriguez
, “
The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale
,”
Nanotechnology
18
,
435503
(
2007
).
47.
L.
Collins
 et al., “
Breaking the time barrier in Kelvin probe force microscopy: Fast free force reconstruction using the G-mode platform
,”
ACS Nano
11
,
8717
8729
(
2017
).
48.
L.
Collins
 et al., “
Multifrequency spectrum analysis using fully digital G mode-Kelvin probe force microscopy
,”
Nanotechnology
27
,
105706
(
2016
).
49.
S. D.
Collins
 et al., “
Observing ion motion in conjugated polyelectrolytes with Kelvin probe force microscopy
,”
Adv. Electron. Mater.
3
,
1700005
(
2017
).
50.
E.
Strelcov
 et al., “
Space- and time-resolved mapping of ionic dynamic and electroresistive phenomena in lateral devices
,”
ACS Nano
7
,
6806
6815
(
2013
).
51.
J. L.
Garrett
 et al., “
Real-time nanoscale open-circuit voltage dynamics of perovskite solar cells
,”
Nano Lett.
17
,
2554
2560
(
2017
).
52.
G.
Gramse
,
G.
Gomila
, and
L.
Fumagalli
, “
Quantifying the dielectric constant of thick insulators by electrostatic force microscopy: Effects of the microscopic parts of the probe
,”
Nanotechnology
23
,
205703
(
2012
).
53.
A. V.
Ievlev
,
C.
Brown
,
M. J.
Burch
,
J. C.
Agar
,
G. A.
Velarde
,
L. W.
Martin
,
P.
Maksymovych
,
S. V.
Kalinin
, and
O. S.
Ovchinnikova
, “
Chemical phenomena of atomic force microscopy scanning
,”
Anal. Chem.
90
(
5
),
3475
3481
(
2018
).
You do not currently have access to this content.