A versatile 3D-printed droplet-on-demand generator is presented for laboratory use in droplet impact and similar experiments. The design described and tested in the present work is modeled off of an existing design [Harris et al., Exp. Fluids 56, 83 (2015)] but is tested with an extended range of working fluids, and the manufacturing process is greatly simplified by 3D-printing the principal components. The present device is tested with de-ionized water and water-glycerol mixtures and was reliably able to produce single droplets-on-demand of diameters 0.65-1.32 mm with an overall variability of less than 1%. The computer-aided design (CAD) files, parts list, sample software, and circuit layout are available with this note, allowing for the device to be readily reproduced or adapted for a wide range of experimental applications.

1.
D. M.
Harris
,
T.
Liu
, and
J. W. M.
Bush
,
Exp. Fluids
56
,
83
(
2015
).
2.
A. L.
Yarin
,
Annu. Rev. Fluid. Mech.
38
,
159
(
2006
).
3.
C.
Josserand
,
P.
Ray
, and
S.
Zaleski
,
J. Fluid Mech.
802
,
775
(
2016
).
4.
W.
Zhang
,
T.
Yu
,
J.
Fan
,
W.
Sun
, and
Z.
Cao
,
J. Appl. Phys.
119
,
114901
(
2016
).
5.
D.
Khojasteh
,
M.
Kazerooni
,
S.
Salarian
, and
R.
Kamali
,
J. Ind. Eng. Chem.
42
,
1
(
2016
).
6.
J.
Zou
,
P. F.
Wang
,
T. R.
Zhang
,
X.
Fu
, and
X.
Ruan
,
Phys. Fluids
23
,
044101
(
2011
).
7.
J. C.
Yang
,
W.
Chien
,
M.
King
, and
W. L.
Grosshandler
,
Exp. Fluids
23
,
445
(
1997
).
8.
D.
Terwagne
,
F.
Ludewig
,
N.
Vandewalle
, and
S.
Dorbolo
,
Phys. Fluids
25
,
122101
(
2013
).
9.
J.
Castrejón-Pita
,
G.
Martin
,
S.
Hoath
, and
I.
Hutchings
,
Rev. Sci. Instrum.
79
,
075108
(
2008
).
10.
S.
Cheng
and
S.
Chandra
,
Exp. Fluids
34
,
755
(
2003
).
11.
J.
Canny
,
IEEE Trans. Pattern Anal. Mach. Int.
PAMI-8
,
679
(
1986
).
12.
E.
Muller
,
Sitzber. Akad. Wiss. Wien, Math.-Naturew. Klasse, Abt. IIa
133
,
133
(
1924
).

Supplementary Material

You do not currently have access to this content.