A monitoring device is proposed to investigate the charge accumulation effects in a high-aspect-ratio trench structure. This monitoring device is made of an anodic aluminum oxide (AAO) template, which is a self-organized material with parallel pores, to demonstrate a high aspect ratio trench structure. A top electrode and bottom electrode were formed in the AAO contact structure for measuring electric potentials. These electrodes can be assumed to be electrically floating due to the very high input resistance of the measurement circuit. Therefore, the electric potentials resulting from the charge accumulation can be measured. In this paper, the fabrication process of the proposed device and experimental demonstrations are presented.

1.
C.
Auth
,
A.
Aliyarukunju
,
M.
Asoro
,
D.
Bergstrom
,
V.
Bhagwat
,
J.
Birdsall
,
N.
Bisnik
,
M.
Buehler
,
V.
Chikarmane
, and
G.
Ding
, paper presented at the
2017 IEEE International Electron Devices Meeting (IEDM)
,
2017
.
2.
H. T.
Lue
,
S. H.
Chen
,
Y. H.
Shih
,
K. Y.
Hsieh
, and
C. Y.
Lu
, paper presented at the
2012 IEEE 11th International Conference on Solid-State and Integrated Circuit Technology (ICSICT)
,
2012
.
3.
K. T.
Park
,
D.-S.
Byeon
, and
D. H.
Kim
, paper presented at the
2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS)
,
2014
.
4.
K. T.
Park
,
S.
Nam
,
D.
Kim
,
P.
Kwak
,
D.
Lee
,
Y. H.
Choi
,
M. H.
Choi
,
D. H.
Kwak
,
D. H.
Kim
, and
M. S.
Kim
,
IEEE J. Solid-State Circuits
50
(
1
),
204
213
(
2015
).
5.
N.
Fujiwara
,
S.
Ogino
,
T.
Maruyama
, and
M.
Yoneda
,
Plasma Sources Sci. Technol.
5
(
2
),
126
(
1996
).
6.
T.
Kinoshita
,
M.
Hane
, and
J. P.
McVittie
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom.
14
(
1
),
560
565
(
1996
).
7.
G. S.
Hwang
and
K. P.
Giapis
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom.
15
(
1
),
70
87
(
1997
).
8.
K.
Hashimoto
,
Jpn. J. Appl. Phys., Part 1
33
(
10R
),
6013
(
1994
).
9.
T.
Nozawa
,
T.
Kinoshita
,
T.
Nishizuka
,
A.
Narai
,
T.
Inoue
, and
A.
Nakaue
,
Jpn. J. Appl. Phys., Part 1
34
(
4B
),
2107
(
1995
).
10.
G. S.
Hwang
and
K. P.
Giapis
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom.
15
(
5
),
1839
1842
(
1997
).
11.
J.
Matsui
,
N.
Nakano
,
Z. L.
Petrović
, and
T.
Makabe
,
Appl. Phys. Lett.
78
(
7
),
883
885
(
2001
).
12.
H.
Ohtake
,
B.
Jinnai
,
Y.
Suzuki
,
S.
Soda
,
T.
Shimmura
, and
S.
Samukawa
,
J. Vac. Sci. Technol., A
24
(
6
),
2172
2175
(
2006
).
13.
B.
Jinnai
,
T.
Orita
,
M.
Konishi
,
J.
Hashimoto
,
Y.
Ichihashi
,
A.
Nishitani
,
S.
Kadomura
,
H.
Ohtake
, and
S.
Samukawa
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom.
25
(
6
),
1808
1813
(
2007
).
14.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
(
John Wiley & Sons
,
2005
).
15.
Y.
Xu
,
G.
Thompson
, and
G.
Wood
,
Trans. IMF
63
(
1
),
98
103
(
1985
).
16.
X.
Wang
and
G.-R.
Han
,
Microelectron. Eng.
66
(
1-4
),
166
170
(
2003
).
17.
A.
Belwalkar
,
E.
Grasing
,
W.
Van Geertruyden
,
Z.
Huang
, and
W.
Misiolek
,
J. Membr. Sci.
319
(
1-2
),
192
198
(
2008
).
18.
M. H.
Lee
,
S. H.
Jang
, and
C. W.
Chung
,
J. Appl. Phys.
101
(
3
),
033305
(
2007
).
19.
W.
Holber
and
J.
Forster
,
J. Vac. Sci. Technol., A
8
(
5
),
3720
3725
(
1990
).
20.
J.
Zheng
,
R. P.
Brinkmann
, and
J. P.
McVittie
,
J. Vac. Sci. Technol., A
13
(
3
),
859
864
(
1995
).
21.
J. H.
Kim
,
Y. C.
Kim
, and
C. W.
Chung
,
Phys. Plasmas
22
(
7
),
073502
(
2015
).
You do not currently have access to this content.