In the currently performed neutral beam (NB) -heated deuterium plasma experiments, neutrons are mainly produced by a beam-plasma reaction. Therefore, time-resolved measurement of the neutron emission profile can enhance the understanding of the classical and/or anomalous transport of beam ions. To measure radial neutron emission profiles as a function of time, the vertical neutron camera (VNC) capable of operation with a counting rate in the MHz range was newly installed on the Large Helical Device (LHD). This is the world’s first neutron camera for stellarator/heliotron devices. The VNC consists of a multichannel collimator, eleven fast-neutron detectors, and the digital-signal-processing-based data acquisition system (DAQ). The multichannel collimator having little cross talk was made from hematite-doped heavy concrete, which has a high shielding performance against both neutrons and gamma-rays. A stilbene crystal coupled with a photomultiplier having high-gain-stability in the high-count rate regime was utilized as a fast-neutron scintillation detector because it has a high neutron-gamma discrimination capability at high count rates. The DAQ system equipped with a field programmable logic controller was developed to obtain the waveform acquired with a 1 GHz sampling rate and the shaping parameter of each pulse simultaneously at up to 106 cps (counts per second). Neutron emission profiles were successfully obtained in the first deuterium campaign of LHD in 2017. The neutron emission profile was measured in tangentially co-injected NB-heated plasma with different magnetic axes (Rax). The neutron counts became larger in the inward-shifted configuration, which was consistent with the total neutron rate measured by the neutron flux monitor. The radial peak position of the line-integrated neutron profile which changed according to Rax showed that the VNC worked successfully as designed. The VNC demonstrated the expected performance conducive to extending energetic-particle physics studies in LHD.

1.
O. N.
Javis
,
Plasma Phys. Controlled Fusion
36
,
209
(
1994
).
2.
J. D.
Strachan
,
A.
Bhattacharjee
,
D. J.
Jassby
, and
H. H.
Towner
,
Phys. Lett. A
66
,
295
(
1978
).
3.
A. L.
Roquemore
,
R. C.
Chouinard
,
M.
Diesso
,
R.
Palladino
,
J. D.
Strachan
, and
G. D.
Tait
,
Rev. Sci. Instrum.
61
,
3163
(
1990
).
4.
A. L.
Roquemore
,
M.
Bitter
,
L. C.
Johnson
, and
S.
von Goeler
,
Rev. Sci. Instrum.
68
,
544
(
1997
).
5.
L. C.
Johnson
,
Rev. Sci. Instrum.
63
,
4517
(
1992
).
6.
J. M.
Adams
,
O. N.
Jarvis
,
G. J.
Sadler
,
D. B.
Syme
, and
N.
Watkins
,
Nucl. Instrum. Methods Phys. Res., Sect. A
329
,
277
(
1993
).
7.
M.
Riva
,
B.
Esposito
,
D.
Marocco
,
F.
Belli
,
B.
Syme
, and
L.
Giacomelli
,
Fusion Eng. Des.
86
,
1191
(
2011
).
8.
T.
Craciunescu
,
G.
Bonheure
,
V.
Kiptily
,
A.
Murari
,
S.
Soare
,
I.
Tiseanu
,
V.
Zoita
, and
JET EFDA Contributors
,
Nucl. Instrum. Methods Phys. Res., Sect. A
595
,
623
(
2008
).
9.
M.
Ishikawa
,
T.
Nishitani
,
A.
Morioka
,
M.
Takechi
,
K.
Shinohara
,
M.
Shimada
,
Y.
Miura
,
M.
Nagami
, and
Yu. A.
Kaschuc
,
Rev. Sci. Instum.
73
,
4237
(
2002
).
10.
M.
Ishikawa
,
T.
Itoga
,
T.
Okuji
,
M.
Nakhostin
,
K.
Shinohara
,
T.
Hayashi
,
A.
Sukegawa
, and
M.
Baba
,
Rev. Sci. Instrum.
77
,
10E706
(
2006
).
11.
M.
Ishikawa
,
M.
Takechi
,
K.
Shinohara
,
Y.
Kusama
,
C. Z.
Cheng
,
G.
Matsunaga
,
Y.
Todo
,
N. N.
Gorelenkov
,
G. J.
Kramer
,
R.
Nazikian
,
A.
Fukuyama
,
V. A.
Krasilnikov
,
Yu.
Kashuck
,
T.
Nishitani
,
A.
Morioka
,
M.
Sasao
,
M.
Isobe
, and
JT-60 Team
,
Nucl. Fusion
45
,
1474
(
2005
).
12.
P.
Batistoni
,
B.
Esposito
,
M.
Martone
, and
S.
Mantovani
,
Rev. Sci. Instrum.
66
,
4949
(
1995
).
13.
M.
Cecconello
,
M.
Turnyanskiy
,
S.
Conroy
,
G.
Ericsson
,
E.
Ronchi
,
S.
Sangaroon
,
R.
Akers
,
I.
Fitzgerald
,
A.
Cullen
, and
M.
Weiszflog
,
Rev. Sci. Instrum.
81
,
10D315
(
2010
).
14.
J.-G.
Kwak
,
H. S.
Kim
,
M. S.
Cheon
,
S. T.
Oh
,
Y. S.
Lee
,
T.
Terzolo
, and
KSTAR Team
,
Fusion Eng. Des.
109-111
,
608
(
2016
).
15.
Y.
Izumi
,
H.
Tomita
,
Y.
Nakayama
,
S.
Hayashi
,
K.
Morishima
,
M.
Isobe
,
M. S.
Cheon
,
K.
Ogawa
,
T.
Nishitani
,
T.
Naka
,
T.
Nakano
,
M.
Nakamura
, and
T.
Iguchi
,
Rev. Sci. Instrum.
87
,
11D840
(
2016
).
16.
G. Q.
Zhong
,
L. Q.
Hu
,
N.
Pu
,
R. J.
Zhou
,
M.
Xiao
,
H. R.
Cao
,
Y. B.
Zhu
,
K.
Li
,
T. S.
Fan
,
X. Y.
Peng
,
T. F.
Du
,
L. J.
Ge
,
J.
Huang
,
G. S.
Xu
,
B. N.
Wan
, and
EAST Team
,
Rev. Sci. Instrum.
87
,
11D820
(
2016
).
17.
Y. P.
Zhang
,
J. W.
Yang
,
Y.
Liu
,
T. S.
Fan
,
X. B.
Luo
,
G. L.
Yuan
,
P. F.
Zhang
,
X. F.
Xie
,
X. Y.
Song
,
W.
Chen
,
X. Q.
Ji
,
X.
Li
,
T. F.
Du
,
L. J.
Ge
,
B. Z.
Fu
,
M.
Isobe
,
X. M.
Song
,
Z. B.
Shi
,
Q. W.
Yang
, and
X. R.
Duan
,
Rev. Sci. Instrum.
87
,
063503
(
2016
).
18.
W. J.
Capecchi
,
J. K.
Anderson
,
P. J.
Bonofiglo
,
J.
Kim
, and
S.
Sears
,
Rev. Sci. Instrum.
87
,
11D826
(
2016
).
19.
M.
Cecconello
,
S.
Sangaroon
,
M.
Turnyanskiy
,
S.
Conroy
,
I.
Wodniak
,
R. J.
Akers
,
G.
Ericsson
, and
MAST Team
,
Nucl. Fusion
52
,
094015
(
2012
).
20.
L.
Giacomelli
,
A.
Hjalmarsson
,
H.
Sjöstrand
,
W.
Glasser
,
J.
Källne
,
S.
Conroy
,
G.
Ericsson
,
M.
Gatu Johnson
,
G.
Gorini
,
H.
Henriksson
,
S.
Popovichev
,
E.
Ronchi
,
J.
Sousa
,
E.
Sunden Andersson
,
M.
Tardocchi
,
J.
Thun
,
M.
Weiszflog
, and
Contributors to the JET-EFDA Workprogram
,
Nucl. Fusion
45
,
1191
(
2005
).
21.
D.
Marocco
,
B.
Esposito
, and
F.
Moro
,
J. Instrum.
7
,
C03033
(
2012
).
22.
M.
Sasao
,
M.
Isobe
,
M.
Osakabe
,
A.
Taniike
,
T.
Iguchi
,
H.
Takada
,
T.
Iida
, and
M.
Wada
,
Fusion Eng. Des.
34
,
595
(
1997
).
23.
X-5 Monte Carlo Team
, “
MCNP—A general N-particle transport code, version 5
,” Volume I: Overview and Theory LA-UR-03-1987, 2003, updated,
2005
.
24.
M.
Isobe
,
H.
Yamanishi
,
M.
Osakabe
,
H.
Miyake
,
H.
Tomita
,
K.
Watanabe
,
H.
Iwai
,
Y.
Nomura
,
N.
Nishio
,
K.
Ishii
,
J. H.
Kaneko
,
J.
Kawarabayashi
,
E.
Takada
,
A.
Uritani
,
M.
Sasao
,
T.
Iguchi
,
Y.
Takeiri
, and
H.
Yamada
,
Rev. Sci. Instrum.
81
,
10D310
(
2010
).
25.
K.
Ogawa
,
M.
Isobe
,
E.
Takada
,
Y.
Uchida
,
K.
Ochiai
,
H.
Tomita
,
A.
Uritani
,
T.
Kobuchi
, and
Y.
Takeiri
,
Rev. Sci. Instrum.
85
,
11E110
(
2014
).
26.
H.
Kawase
 et al., “
Evaluation of spatial resolution of neutron profile monitor in LHD
,”
IEEE Trans. Plasma Phys.
(published online).
27.
28.
See http://www.hongsencable.com/pdf/01714670.pdf for the specification of 3D-FB cable.
29.
See https://www.tek.com/datasheet/digital-phosphor-oscilloscopes for the data sheet of DPO7000 series.
30.
See http://www.techno-ap.com/img/APV8102_14MWPSAGb.pdf for the specification of APV8102-14MWPSAGb.
31.
See http://www.techno-ap.com/img/APV3304.pdf for the specification of APV 3304.
34.
M. Y.
Tanaka
,
M.
Aramaki
,
K.
Ogiwara
,
S.
Etoh
,
S.
Yoshimura
, and
J.
Varanjes
,
AIP Conf. Proc.
1061
,
57
(
2008
).
35.
See https://www.nfcorp.co.jp/english/sup/dl/manual/mi/e_wf1946b.pdf for the instruction manual of WF1964B.
36.
K.
Ishii
,
K.
Shinohara
,
M.
Ishikawa
,
M.
Baba
,
M.
Isobe
,
A.
Okamoto
,
S.
Kitajima
, and
M.
Sasao
,
Rev. Sci. Instum.
81
,
10D334
(
2010
).
37.
C.
Konno
,
Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements
, IAEA-TECDOC-1743 (
IAEA
,
Vienna
,
2014
), pp.
110
118
, https://www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-1743/.
39.
40.
See http://www.ni.com/ja-jp/support/model.ni-5772.html for the specification of NI-5772.
41.
See http://www.ni.com/ja-jp/support/model.pxie-7962.html for the specification of PXIe-7962.
42.
M.
Baba
,
M.
Takada
,
T.
Iwasaki
,
S.
Matsuyama
,
T.
Nakamura
,
H.
Ohguchi
,
T.
Nakano
,
T.
Sanami
, and
N.
Hirakawa
,
Nucl. Instrum. Methods Phys. Res., Sect. A
376
,
115
(
1996
).
43.
I.
Murata
,
Compendium of Neutron Beam Facilities for High Precision Nuclear Data Measurements
, IAEA-TECDOC-1743 (
IAEA
,
Vienna
,
2014
), pp.
110
118
, https://www-nds.iaea.org/publications/tecdocs/iaea-tecdoc-1743/.
44.
I.
Yamada
,
K.
Narihara
,
H.
Funaba
,
T.
Minami
,
H.
Hayashi
,
T.
Kohmoto
, and
LHD Experiment Group
,
Fusion Sci. Technol.
58
,
345
(
2010
).
45.
T.
Akiyama
 et al.,
Fusion Sci. Technol.
58
,
352
(
2010
).
46.
M.
Isobe
 et al.,
Rev. Sci. Instrum.
85
,
11E114
(
2014
).
You do not currently have access to this content.