The atomic beam probe diagnostic concept aims at measuring the edge magnetic field and through that edge current distribution in fusion plasmas by observing trajectories of an ion beam stemming from a diagnostic neutral beam. The diagnostic potentially has microsecond scale time resolution and can thus prove to be a powerful option to study fast changes in the edge plasma. A test detector has been installed on the COMPASS tokamak as an extension of the existing lithium beam diagnostic system. It employs a relatively simple concept of an array of conductive detection plates measuring the incident ion current, which is then amplified and converted to a voltage signal. The aim of the test detector is to experimentally examine the idea of the diagnostic and provide background data for design and installation of a final detector. Also, a numerical code based on the CUDA parallel computing platform has been developed for modeling lithium ion trajectories in the given COMPASS plasma discharges. We present the developments of the detector design and test measurements of the diagnostic performed both in a laboratory beam system and on the COMPASS tokamak.

1.
K.
Ikeda
,
Nucl. Fusion
47
(
6
),
S1-S17
(
2007
).
2.
H.
Zohm
,
Plasma Phys. Controlled Fusion
38
,
105
128
(
1996
).
3.
J. W.
Connor
,
Plasma Phys. Controlled Fusion
40
,
531
542
(
1998
).
4.
A.
Kirk
 et al,
Phys. Rev. Lett.
92
,
245002
(
2004
).
5.
P. B.
Snyder
 et al,
Phys. Plasmas
9
,
2037
(
2002
).
6.
D. M.
Thomas
 et al,
Rev. Sci. Instrum.
74
,
1541
(
2003
).
7.
K.
Kamiya
 et al,
Rev. Sci. Instrum.
81
,
033502
(
2010
).
8.
A. A.
Korotkov
 et al,
Rev. Sci. Instrum.
75
,
2590
(
2004
).
9.
D. M.
Thomas
 et al,
Phys. Rev. Lett.
93
,
065003
(
2004
).
10.
T. P.
Crowley
,
Rev. Sci. Instrum.
59
,
1638
(
1988
).
11.
A.
Shimizu
 et al,
Rev. Sci. Instrum.
76
,
043504
(
2005
).
12.
A. V.
Melnikov
 et al,
Nucl. Fusion
57
,
072004
(
2017
).
13.
J. G.
Schwelberger
 et al,
Rev. Sci. Instrum.
69
,
3828
(
1998
).
14.
X.
Yang
 et al,
Rev. Sci. Instrum.
87
,
11D608
(
2016
).
15.
M.
Berta
 et al,
Fusion Eng. Des.
88
,
2875
2880
(
2013
).
16.
K.
McCormick
 et al,
Fusion Eng. Des.
34–35
,
125
134
(
1997
).
17.
S.
Zoletnik
 et al,
Rev. Sci. Instrum.
76
,
073504
(
2005
).
18.
S.
Zoletnik
 et al,
Rev. Sci. Instrum.
89
,
10D107
(
2018
).
19.
J.
Galdon-Quiroga
 et al,
J. Instrum.
12
,
C08023
(
2017
).
20.
V.
Weinzettl
 et al,
J. Instrum.
12
,
C12015
(
2017
).
21.
R.
Pánek
 et al,
Plasma Phys. Controlled Fusion
58
,
014015
(
2016
).
22.
G.
Anda
 et al,
Fusion Eng. Des.
108
,
1
6
(
2016
).
23.
M.
Berta
 et al,
Fusion Eng. Des.
96–97
,
795
798
(
2015
).
24.
D.
Guszejnov
 et al,
Rev. Sci. Instrum.
83
,
113501
(
2012
).
25.
O.
Hachenberg
and
W.
Brauer
,
Adv. Electron. Electron Phys.
11
,
413
499
(
1959
).
26.
K.
Bethge
and
K.
Lexa
,
Br. J. Appl. Phys.
17
,
181
186
(
1966
).
27.
L. C.
Appel
 et al,
Nucl. Fusion
41
,
169
(
2001
).
You do not currently have access to this content.