Many space plasmas (especially electrons generated in planetary ionospheres) exhibit fine-detailed structures that are challenging to fully resolve with the energy resolution of typical space plasma analyzers (10% → 20%). While analyzers with higher resolution have flown, generally this comes at the expense of sensitivity and temporal resolution. We present a new technique for measuring plasmas with extremely high energy resolution through the combination of a top-hat Electrostatic Analyzer (ESA) followed by an internally mounted Retarding Potential Analyzer (RPA). When high resolutions are not required, the RPA is grounded, and the instrument may operate as a typical general-purpose plasma analyzer using its ESA alone. We also describe how such an instrument may use its RPA to remotely vary the geometric factor (sensitivity) of a top hat analyzer, as was performed on the New Horizons Solar Wind at Pluto and MAVEN SupraThermal and Thermal Ion Composition instruments. Finally, we present results from laboratory testing of our prototype, showing that this technique may be used to construct an instrument with 1.6% energy resolution, constant over all energies and angles.

1.
S.
Barabash
 et al., “
The analyzer of space plasmas and energetic atoms (ASPERA-3) for the Mars express mission
,”
Space Sci. Rev.
126
,
113
164
(
2006
).
2.
S.
Barabash
 et al., “
The analyser of space plasmas and energetic atoms (ASPERA-4) for the Venus express mission
,”
Planet. Space Sci.
55
,
1772
1792
(
2007
).
3.
J. L.
Burch
,
R.
Goldstein
,
T. E.
Cravens
,
W. C.
Gibson
,
R. N.
Lundin
,
C. J.
Pollock
,
J. D.
Winningham
, and
D. T.
Young
, “
RPC-IES: The ion and electron sensor of the Rosetta Plasma Consortium
,”
Space Sci. Rev.
128
,
697
712
(
2007
).
4.
C. W.
Carlson
,
D. W.
Curtis
,
G.
Paschmann
, and
W.
Michel
, “
An instrument for rapidly measuring plasma distribution functions with high resolution
,”
Adv. Space Res.
2
,
67
70
(
1982
).
5.
C. W.
Carlson
,
J. P.
McFadden
,
P.
Turin
,
D. W.
Curtis
, and
A.
Magoncelli
, “
The electron and ion plasma experiment for FAST
,”
Space Sci. Rev.
98
,
33
66
(
2001
).
6.
A. J.
Coates
,
S. M. E.
Tsang
,
A.
Wellbrock
,
R. A.
Frahm
,
J. D.
Winningham
,
S.
Barabash
,
R.
Lundin
,
D. T.
Young
, and
F. J.
Crary
, “
Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan
,”
Planet. Space Sci.
59
,
1019
1027
(
2011
).
7.
A. J.
Coates
,
A.
Wellbrock
,
J. H.
Waite
, and
G. H.
Jones
, “
A new upper limit to the field-aligned potential near Titan
,”
Geophys. Res. Lett.
42
,
4676
4684
, https://doi.org/10.1002/2015GL064474 (
2015
).
8.
G.
Collinson
 et al., “
Electric Mars: The first direct measurement of an upper limit for the Martian ‘polar wind’ electric potential
,”
Geophys. Res. Lett.
42
,
9128
9134
, https://doi.org/10.1002/2015GL065084 (
2015
).
9.
Collinson
,
G. A.
, “
The computer simulated design of an improved plasma analyser towards an electron spectrometer for solar orbiter
,” Ph.D. thesis,
Mullard Space Science Laboratory, Department of Physics and Astronomy, University College London
,
2010
.
10.
G. A.
Collinson
and
D. O.
Kataria
, “
On variable geometric factor systems for top-hat electrostatic space plasma analyzers
,”
Meas. Sci. Technol.
21
(
10
),
105903
(
2010
).
11.
G. A.
Collinson
 et al., “
The geometric factor of electrostatic plasma analyzers: A case study from the fast plasma investigation for the magnetospheric multiscale mission
,”
Rev. Sci. Instrum.
83
(
3
),
033303
(
2012
).
12.
G. A.
Collinson
 et al., “
Hot flow anomalies at Venus
,”
J. Geophys. Res.: Space Phys.
117
(
A16
),
A04204
, https://doi.org/10.1029/2011ja017277 (
2012
).
13.
G. A.
Collinson
 et al., “
The electric wind of Venus: A global and persistent ‘polar wind’-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions
,”
Geophys. Res. Lett.
43
,
5926
, https://doi.org/10.1002/2016GL068327 (
2016
).
14.
G. A.
Collinson
,
J. P.
McFadden
,
D. J.
Chornay
,
D.
Gershman
, and
T. E.
Moore
, “
Constraining electric fields from electrostatic deflector plates: A brief report and case study from the fast plasma investigation for the magnetospheric multiscale mission
,”
J. Geophys. Res.: Space Phys.
121
,
7887
7894
, https://doi.org/10.1002/2016JA022590 (
2016
).
15.
J. P.
Doering
,
C. O.
Bostrom
, and
J. C.
Armstrong
, “
The photoelectron-spectrometer experiment on atmosphere explorer
,”
Radio Sci.
8
,
387
392
, https://doi.org/10.1029/RS008i004p00387 (
1973
).
16.
J. P.
Doering
,
W. K.
Peterson
,
C. O.
Bostrom
, and
T. A.
Potemra
, “
High resolution daytime photoelectron energy spectra from AE-E
,”
Geophys. Res. Lett.
3
,
129
131
, https://doi.org/10.1029/GL003i003p00129 (
1976
).
17.
C. L.
Enloe
and
J. R.
Shell
 II
, “
Optimizing the energy resolution of planar retarding potential analyzers
,”
Rev. Sci. Instrum.
63
,
1788
1791
(
1992
).
18.
A.
Glocer
,
N.
Kitamura
,
G.
Toth
, and
T.
Gombosi
, “
Modeling solar zenith angle effects on the polar wind
,”
J. Geophys. Res.: Space Phys.
117
,
A04318
, https://doi.org/10.1029/2011JA017136 (
2012
).
19.
J. S.
Halekas
,
E. R.
Taylor
,
G.
Dalton
,
G.
Johnson
,
D. W.
Curtis
,
J. P.
McFadden
,
D. L.
Mitchell
,
R. P.
Lin
, and
B. M.
Jakosky
, “
The solar wind ion analyzer for MAVEN
,”
Space Sci. Rev.
195
,
125
151
(
2015
).
20.
W. B.
Hanson
,
D. R.
Zuccaro
,
C. R.
Lippincott
, and
S.
Sanatani
, “
The retarding-potential analyzer on atmosphere explorer
,”
Radio Sci.
8
,
333
339
, https://doi.org/10.1029/RS008i004p00333 (
1973
).
21.
W. B.
Hanson
,
R. A.
Heelis
,
R. A.
Power
,
C. R.
Lippincott
,
D. R.
Zuccaro
,
B. J.
Holt
,
L. H.
Harmon
, and
S.
Sanatani
, “
The retarding potential analyzer for dynamics explorer-B
,”
Space Sci. Instrum.
5
,
503
510
(
1981
).
22.
A. D.
Johnstone
 et al.,
PEACE: A Plasma Electron and Current Experiment
(
ESA Special Publication
,
1993
), Vol. 1159, p.
163
.
23.
N.
Kitamura
,
K.
Seki
,
Y.
Nishimura
,
N.
Terada
,
T.
Ono
,
T.
Hori
, and
R. J.
Strangeway
, “
Photoelectron flows in the polar wind during geomagnetically quiet periods
,”
J. Geophys. Res.: Space Phys.
117
,
A07214
, https://doi.org/10.1029/2011JA017459 (
2012
).
24.
W. C.
Knudsen
,
K.
Spenner
,
J.
Bakke
, and
V.
Novak
, “
Pioneer Venus orbiter planar retarding potential analyzer plasma experiment
,”
IEEE Trans. Geosci. Remote Sens.
18
,
54
59
(
1980
).
25.
R. P.
Lin
 et al., “
A three-dimensional plasma and energetic particle investigation for the wind spacecraft
,”
Space Sci. Rev.
71
,
125
153
(
1995
).
26.
D. R.
Linder
,
A. J.
Coates
,
R. D.
Woodliffe
,
C.
Alsop
,
A. D.
Johnstone
,
M.
Grande
,
A.
Preece
,
B.
Narheim
, and
D. T.
Young
, “
The Cassini CAPS electron spectrometer
,” in
Measurement Techniques in Space Plasmas: Particles
(
Geophysical Monograph, 102, American Geophysical Union
,
1998
), p.
257
.
27.
D.
McComas
 et al., “
The solar wind around pluto (SWAP) instrument aboard New Horizons
,”
Space Sci. Rev.
140
,
261
313
(
2008
).
28.
J. P.
McFadden
,
C. W.
Carlson
,
D.
Larson
,
M.
Ludlam
,
R.
Abiad
,
B.
Elliott
,
P.
Turin
,
M.
Marckwordt
, and
V.
Angelopoulos
, “
The THEMIS ESA plasma instrument and in-flight calibration
,”
Space Sci. Rev.
141
,
277
302
(
2008
).
29.
J. P.
McFadden
 et al., “
MAVEN Suprathermal and thermal ion compostion (STATIC) instrument
,”
Space Sci. Rev.
195
,
199
256
(
2015
).
30.
D. L.
Mitchell
,
R. P.
Lin
,
C.
Mazelle
,
H.
Rème
,
P. A.
Cloutier
,
J. E. P.
Connerney
,
M. H.
Acuña
, and
N. F.
Ness
, “
Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer
,”
J. Geophys. Res.
106
,
23419
23428
, https://doi.org/10.1029/2000JE001435 (
2001
).
31.
D. L.
Mitchell
 et al., “
The MAVEN solar wind electron analyzer
,”
Space Sci. Rev.
200
,
495
528
(
2016
).
32.
A. O.
Nier
,
W. B.
Hanson
,
M. B.
McElroy
,
A.
Seiff
, and
N. W.
Spencer
, “
Entry science experiments: The Viking Mars lander
,”
Icarus
16
,
74
91
(
1972
).
33.
H.
Nilsson
 et al., “
RPC-ICA: The ion composition analyzer of the Rosetta Plasma Consortium
,”
Space Sci. Rev.
128
,
671
695
(
2007
).
34.
C.
Pollock
 et al., “
Fast plasma investigation for magnetospheric multiscale
,”
Space Sci. Rev.
199
,
331
406
(
2016
).
35.
J.
Sauvaud
 et al., “
The IMPACT solar wind electron analyzer (SWEA)
,”
Space Sci. Rev.
136
,
227
239
(
2008
).
36.
J.-A.
Sauvaud
 et al., “
The Mercury electron analyzers for the Bepi Colombo mission
,”
Adv. Space Res.
46
,
1139
1148
(
2010
).
37.
Y.-J.
Su
,
J. L.
Horwitz
,
G. R.
Wilson
,
P. G.
Richards
,
D. G.
Brown
, and
C. W.
Ho
, “
Self-consistent simulation of the photoelectron-driven polar wind from 120 km to 9 RE altitude
,”
J. Geophys. Res.
103
,
2279
2296
, https://doi.org/10.1029/97JA03085 (
1998
).
38.
S.
Xu
 et al., “
Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations
,”
J. Geophys. Res.: Space Phys.
122
,
1831
1852
, https://doi.org/10.1002/2016JA023467 (
2017
).
39.
D. T.
Young
 et al., “
Cassini plasma spectrometer investigation
,”
Space Sci. Rev.
114
,
1
4
(
2004
).
40.
D. T.
Young
 et al., “
Plasma experiment for planetary exploration (PEPE)
,”
Space Sci. Rev.
129
,
327
357
(
2007
).
You do not currently have access to this content.