Here we report on the magneto-optical Kerr effect employing a nematic liquid crystal (LC) device as an optical modulator. This device allows performing intensity, phase, and polarization modulated measurements with a huge signal-to-noise ratio when compared to those obtained by means of an opto-mechanical chopper and a photo-elastic modulator. The results demonstrate that the optimal performance is achieved modulating the polarization state of the incident light by means of the LCs.
REFERENCES
1.
J. A.
Arregi
, P.
Riego
, and A.
Berger
, “What is the longitudinal magneto-optical Kerr effect?
,” J. Phys. D: Appl. Phys.
50
, 03LT01
(2017
).2.
A.
Zvezdin
and V.
Kotov
, Modern Magnetooptics and Magnetooptical Materials
, Condensed Matter Physics (Taylor & Francis
, 1997
).3.
E.
Jiménez
, N.
Mikuszeit
, J. L. F.
Cuñado
, P.
Perna
, J.
Pedrosa
, D.
Maccariello
, C.
Rodrigo
, M. A.
Niño
, A.
Bollero
, J.
Camarero
, and R.
Miranda
, “Vectorial Kerr magnetometer for simultaneous and quantitative measurements of the in-plane magnetization components
,” Rev. Sci. Instrum.
85
, 053904
(2014
).4.
H. F.
Ding
, S.
Pütter
, H. P.
Oepen
, and J.
Kirschner
, “Experimental method for separating longitudinal and polar Kerr signals
,” J. Magn. Magn. Mater.
212
, 5
–11
(2000
).5.
C.
Daboo
, J. A. C.
Bland
, R. J.
Hicken
, A. J. R.
Ives
, M. J.
Baird
, and M. J.
Walker
, “Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures
,” Phys. Rev. B
47
, 11852
–11859
(1993
).6.
A.
Berger
and M. R.
Pufall
, “Generalized magneto-optical ellipsometry
,” Appl. Phys. Lett.
71
, 965
–967
(1997
).7.
A.
Berger
and M. R.
Pufall
, “Quantitative vector magnetometry using generalized magneto-optical ellipsometry
,” J. Appl. Phys.
85
, 4583
–4585
(1999
).8.
P.
Vavassori
, “Polarization modulation technique for magneto-optical quantitative vector magnetometry
,” Appl. Phys. Lett.
77
, 1605
–1607
(2000
).9.
H. F.
Ding
, S.
Pütter
, H. P.
Oepen
, and J.
Kirschner
, “Spin-reorientation transition in thin films studied by the component-resolved Kerr effect
,” Phys. Rev. B
63
, 134425
(2001
).10.
M. R.
Pufall
, C.
Platt
, and A.
Berger
, “Layer-resolved magnetometry of a magnetic bilayer using the magneto-optical Kerr effect with varying angle of incidence
,” J. Appl. Phys.
85
, 4818
–4820
(1999
).11.
J.
Hamrle
, J.
Ferré
, M.
Nývlt
, and Š.
Višňovský
, “In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers
,” Phys. Rev. B
66
, 224423
(2002
).12.
R.
Morales
, Z.-P.
Li
, O.
Petracic
, X.
Batlle
, I. K.
Schuller
, J.
Olamit
, and K.
Liu
, “Magnetization depth dependence in exchange biased thin films
,” Appl. Phys. Lett.
89
, 072504
(2006
).13.
B.
Huang
, G.
Clark
, E.
Navarro-Moratalla
, D. R.
Klein
, R.
Cheng
, K. L.
Seyler
, D.
Zhong
, E.
Schmidgall
, M. A.
McGuire
, D. H.
Cobden
, W.
Yao
, D.
Xiao
, P.
Jarillo-Herrero
, and X.
Xu
, “Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,” Nature
546
, 270
(2017
).14.
Y.
Liu
, G. A.
Jones
, Y.
Peng
, and T. H.
Shen
, “Generalized theory and application of Stokes parameter measurements made with a single photoelastic modulator
,” J. Appl. Phys.
100
, 063537
(2006
).15.
K.
Sato
, “Measurement of magneto-optical Kerr effect using piezo-birefringent modulator
,” Jpn. J. Appl. Phys., Part I
20
, 2403
(1981
).16.
J. M.
Bueno
, “Polarimetry using liquid-crystal variable retarders: Theory and calibration
,” J. Opt. A: Pure Appl. Opt.
2
, 216
(2000
).17.
I. R.
Hooper
and J. R.
Sambles
, Appl. Phys. Lett.
85
, 3017
–3019
(2004
).18.
S.
Polisetty
, J.
Scheffler
, S.
Sahoo
, Y.
Wang
, T.
Mukherjee
, X.
He
, and C.
Binek
, “Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism
,” Rev. Sci. Instrum.
79
, 055107
(2008
).19.
J.-W.
Lee
, J.-R.
Jeong
, D.-H.
Kim
, J. S.
Ahn
, J.
Kim
, and S.-C.
Shin
, “Three-configurational surface magneto-optical Kerr effect measurement system for an ultrahigh vacuum in situ study of ultrathin magnetic films
,” Rev. Sci. Instrum.
71
, 3801
–3805
(2000
).20.
K.
Postava
, A.
Maziewski
, A.
Stupakiewicz
, A.
Wawro
, L. T.
Baczewski
, S.
Visnovsky
, and T.
Yamaguchi
, “Transverse magneto-optical Kerr effect measured using phase modulation
,” J. Eur. Opt. Soc.: Rapid Publ.
1
, 06017
(2006
).21.
E.
Oblak
, P.
Riego
, L.
Fallarino
, A.
Martínez-de Guerenu
, F.
Arizti
, and A.
Berger
, “Ultrasensitive transverse magneto-optical Kerr effect measurements by means of effective polarization change detection
,” J. Phys. D: Appl. Phys.
50
, 23LT01
(2017
).22.
D. A.
Allwood
, P. R.
Seem
, S.
Basu
, P. W.
Fry
, U. J.
Gibson
, and R. P.
Cowburn
, “Over 40% transverse Kerr effect from Ni80Fe20
,” Appl. Phys. Lett.
92
, 072503
(2008
).23.
Y. K.
Kato
, R. C.
Myers
, A. C.
Gossard
, and D. D.
Awschalom
, “Observation of the spin Hall effect in semiconductors
,” Science
306
, 1910
–1913
(2004
).24.
M.
Montazeri
, P.
Upadhyaya
, M. C.
Onbasli
, G.
Yu
, K. L.
Wong
, M.
Lang
, Y.
Fan
, X.
Li
, P. K.
Amiri
, R. N.
Schwartz
, C. A.
Ross
, and K. L.
Wang
, “Magneto-optical investigation of spin-orbit torques in metallic and insulating magnetic heterostructures
,” Nat. Commun.
6
, 8958
(2015
).25.
G.
Vinai
, B.
Ressel
, P.
Torelli
, F.
Loi
, B.
Gobaut
, R.
Ciancio
, B.
Casarin
, A.
Caretta
, L.
Capasso
, F.
Parmigiani
, F.
Cugini
, M.
Solzi
, M.
Malvestuto
, and R.
Ciprian
, “Giant magneto-electric coupling in 100 nm thick Co capped by ZnO nanorods
,” Nanoscale
10
, 1326
–1336
(2018
).© 2018 Author(s).
2018
Author(s)
You do not currently have access to this content.