Here we report on the magneto-optical Kerr effect employing a nematic liquid crystal (LC) device as an optical modulator. This device allows performing intensity, phase, and polarization modulated measurements with a huge signal-to-noise ratio when compared to those obtained by means of an opto-mechanical chopper and a photo-elastic modulator. The results demonstrate that the optimal performance is achieved modulating the polarization state of the incident light by means of the LCs.

1.
J. A.
Arregi
,
P.
Riego
, and
A.
Berger
, “
What is the longitudinal magneto-optical Kerr effect?
,”
J. Phys. D: Appl. Phys.
50
,
03LT01
(
2017
).
2.
A.
Zvezdin
and
V.
Kotov
,
Modern Magnetooptics and Magnetooptical Materials
, Condensed Matter Physics (
Taylor & Francis
,
1997
).
3.
E.
Jiménez
,
N.
Mikuszeit
,
J. L. F.
Cuñado
,
P.
Perna
,
J.
Pedrosa
,
D.
Maccariello
,
C.
Rodrigo
,
M. A.
Niño
,
A.
Bollero
,
J.
Camarero
, and
R.
Miranda
, “
Vectorial Kerr magnetometer for simultaneous and quantitative measurements of the in-plane magnetization components
,”
Rev. Sci. Instrum.
85
,
053904
(
2014
).
4.
H. F.
Ding
,
S.
Pütter
,
H. P.
Oepen
, and
J.
Kirschner
, “
Experimental method for separating longitudinal and polar Kerr signals
,”
J. Magn. Magn. Mater.
212
,
5
11
(
2000
).
5.
C.
Daboo
,
J. A. C.
Bland
,
R. J.
Hicken
,
A. J. R.
Ives
,
M. J.
Baird
, and
M. J.
Walker
, “
Vectorial magnetometry with the magneto-optic Kerr effect applied to Co/Cu/Co trilayer structures
,”
Phys. Rev. B
47
,
11852
11859
(
1993
).
6.
A.
Berger
and
M. R.
Pufall
, “
Generalized magneto-optical ellipsometry
,”
Appl. Phys. Lett.
71
,
965
967
(
1997
).
7.
A.
Berger
and
M. R.
Pufall
, “
Quantitative vector magnetometry using generalized magneto-optical ellipsometry
,”
J. Appl. Phys.
85
,
4583
4585
(
1999
).
8.
P.
Vavassori
, “
Polarization modulation technique for magneto-optical quantitative vector magnetometry
,”
Appl. Phys. Lett.
77
,
1605
1607
(
2000
).
9.
H. F.
Ding
,
S.
Pütter
,
H. P.
Oepen
, and
J.
Kirschner
, “
Spin-reorientation transition in thin films studied by the component-resolved Kerr effect
,”
Phys. Rev. B
63
,
134425
(
2001
).
10.
M. R.
Pufall
,
C.
Platt
, and
A.
Berger
, “
Layer-resolved magnetometry of a magnetic bilayer using the magneto-optical Kerr effect with varying angle of incidence
,”
J. Appl. Phys.
85
,
4818
4820
(
1999
).
11.
J.
Hamrle
,
J.
Ferré
,
M.
Nývlt
, and
Š.
Višňovský
, “
In-depth resolution of the magneto-optical Kerr effect in ferromagnetic multilayers
,”
Phys. Rev. B
66
,
224423
(
2002
).
12.
R.
Morales
,
Z.-P.
Li
,
O.
Petracic
,
X.
Batlle
,
I. K.
Schuller
,
J.
Olamit
, and
K.
Liu
, “
Magnetization depth dependence in exchange biased thin films
,”
Appl. Phys. Lett.
89
,
072504
(
2006
).
13.
B.
Huang
,
G.
Clark
,
E.
Navarro-Moratalla
,
D. R.
Klein
,
R.
Cheng
,
K. L.
Seyler
,
D.
Zhong
,
E.
Schmidgall
,
M. A.
McGuire
,
D. H.
Cobden
,
W.
Yao
,
D.
Xiao
,
P.
Jarillo-Herrero
, and
X.
Xu
, “
Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
,”
Nature
546
,
270
(
2017
).
14.
Y.
Liu
,
G. A.
Jones
,
Y.
Peng
, and
T. H.
Shen
, “
Generalized theory and application of Stokes parameter measurements made with a single photoelastic modulator
,”
J. Appl. Phys.
100
,
063537
(
2006
).
15.
K.
Sato
, “
Measurement of magneto-optical Kerr effect using piezo-birefringent modulator
,”
Jpn. J. Appl. Phys., Part I
20
,
2403
(
1981
).
16.
J. M.
Bueno
, “
Polarimetry using liquid-crystal variable retarders: Theory and calibration
,”
J. Opt. A: Pure Appl. Opt.
2
,
216
(
2000
).
17.
I. R.
Hooper
and
J. R.
Sambles
,
Appl. Phys. Lett.
85
,
3017
3019
(
2004
).
18.
S.
Polisetty
,
J.
Scheffler
,
S.
Sahoo
,
Y.
Wang
,
T.
Mukherjee
,
X.
He
, and
C.
Binek
, “
Optimization of magneto-optical Kerr setup: Analyzing experimental assemblies using Jones matrix formalism
,”
Rev. Sci. Instrum.
79
,
055107
(
2008
).
19.
J.-W.
Lee
,
J.-R.
Jeong
,
D.-H.
Kim
,
J. S.
Ahn
,
J.
Kim
, and
S.-C.
Shin
, “
Three-configurational surface magneto-optical Kerr effect measurement system for an ultrahigh vacuum in situ study of ultrathin magnetic films
,”
Rev. Sci. Instrum.
71
,
3801
3805
(
2000
).
20.
K.
Postava
,
A.
Maziewski
,
A.
Stupakiewicz
,
A.
Wawro
,
L. T.
Baczewski
,
S.
Visnovsky
, and
T.
Yamaguchi
, “
Transverse magneto-optical Kerr effect measured using phase modulation
,”
J. Eur. Opt. Soc.: Rapid Publ.
1
,
06017
(
2006
).
21.
E.
Oblak
,
P.
Riego
,
L.
Fallarino
,
A.
Martínez-de Guerenu
,
F.
Arizti
, and
A.
Berger
, “
Ultrasensitive transverse magneto-optical Kerr effect measurements by means of effective polarization change detection
,”
J. Phys. D: Appl. Phys.
50
,
23LT01
(
2017
).
22.
D. A.
Allwood
,
P. R.
Seem
,
S.
Basu
,
P. W.
Fry
,
U. J.
Gibson
, and
R. P.
Cowburn
, “
Over 40% transverse Kerr effect from Ni80Fe20
,”
Appl. Phys. Lett.
92
,
072503
(
2008
).
23.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
, “
Observation of the spin Hall effect in semiconductors
,”
Science
306
,
1910
1913
(
2004
).
24.
M.
Montazeri
,
P.
Upadhyaya
,
M. C.
Onbasli
,
G.
Yu
,
K. L.
Wong
,
M.
Lang
,
Y.
Fan
,
X.
Li
,
P. K.
Amiri
,
R. N.
Schwartz
,
C. A.
Ross
, and
K. L.
Wang
, “
Magneto-optical investigation of spin-orbit torques in metallic and insulating magnetic heterostructures
,”
Nat. Commun.
6
,
8958
(
2015
).
25.
G.
Vinai
,
B.
Ressel
,
P.
Torelli
,
F.
Loi
,
B.
Gobaut
,
R.
Ciancio
,
B.
Casarin
,
A.
Caretta
,
L.
Capasso
,
F.
Parmigiani
,
F.
Cugini
,
M.
Solzi
,
M.
Malvestuto
, and
R.
Ciprian
, “
Giant magneto-electric coupling in 100 nm thick Co capped by ZnO nanorods
,”
Nanoscale
10
,
1326
1336
(
2018
).
You do not currently have access to this content.