We present a compact and lightweight 1.5 μm lidar using a free-running single-photon detector (SPD) based on a multi-mode fiber (MMF) coupling InGaAs/InP negative feedback avalanche diode. The ultimate light detection sensitivity of SPD highly reduces the power requirement of the laser, whilst the enhanced collection efficiency due to MMF coupling significantly reduces the volume and weight of telescopes. We develop a specific algorithm for the corrections of errors caused by the SPD and erbium-doped fiber amplifier to extract accurate backscattering signals. We also perform a comparison between single-mode fiber (SMF) coupling and MMF coupling in the lidar receiver, and the results show that the collection efficiency with MMF coupling is five times higher than that with SMF coupling. In order to validate the functionality, we use the lidar system for the application of cloud detection. The lidar system exhibits the ability to detect both the cloud base height and the thickness of multi-layer clouds to an altitude of 12 km with a temporal resolution of 1 s and a spatial resolution of 15 m. Due to the advantages of compactness and lightweight, our lidar system can be installed on unmanned aerial vehicles for wide applications in practice.

1.
G.
Martucci
,
C.
Milroy
, and
C. D.
O’Dowd
,
J. Atmos. Oceanic Technol.
27
,
305
318
(
2010
).
2.
L.
Liu
,
X. J.
Sun
,
X. C.
Liu
,
T. C.
Gao
, and
S. J.
Zhao
,
Adv. Meteorol.
2015
,
853861
.
3.
J. L.
Gaumet
,
J. C.
Heinrich
,
M.
Cluzeau
,
P.
Pierrard
, and
J.
Prieur
,
J. Atmos. Oceanic Technol.
15
,
37
45
(
1998
).
4.
A.
Lavrov
,
A. B.
Utkin
, and
R.
Vilar
,
Opt. Spectrosc.
109
,
144
150
(
2010
).
6.
F.
Marsili
,
V. B.
Verma
,
J. A.
Stern
,
S.
Harrington
,
A. E.
Lita
,
T.
Gerrits
,
I.
Vayshenker
,
B.
Baek
,
M. D.
Shaw
,
R. P.
Mirin
, and
S. W.
Nam
,
Nat. Photonics
7
,
210
214
(
2013
).
7.
X.
Yang
,
H.
Li
,
W.
Zhang
,
L.
You
,
L.
Zhang
,
X.
Liu
,
Z.
Wang
,
W.
Peng
,
X.
Xie
, and
M.
Jiang
,
Opt. Express
22
,
16267
16272
(
2014
).
8.
J.
Wu
,
L.
You
,
S.
Chen
,
H.
Li
,
Y.
He
,
C.
Lv
,
Z.
Wang
, and
X.
Xie
,
Appl. Opt.
56
,
2195
2200
(
2017
).
9.
M.
Shangguan
,
H.
Xia
,
C.
Wang
,
J.
Qiu
,
S.
Lin
,
X.
Dou
,
Q.
Zhang
, and
J.-W.
Pan
,
Opt. Lett.
42
,
3541
3544
(
2017
).
10.
J.
Qiu
,
H.
Xia
,
X.
Dou
,
M.
Li
,
M.
Shangguan
,
C.
Wang
,
X.
Shang
,
S.
Lin
, and
J.
Liu
,
Opt. Lett.
42
,
4454
4457
(
2017
).
11.
H.
Xia
,
G.-L.
Shentu
,
M.
Shangguan
,
X.-X.
Xia
,
X.
Jia
,
C.
Wang
,
J.
Zhang
,
J. S.
Pelc
,
M. M.
Fejer
,
Q.
Zhang
,
X.
Dou
, and
J.-W.
Pan
,
Opt. Lett.
40
,
1579
1582
(
2015
).
12.
M.
Shangguan
,
H.
Xia
,
C.
Wang
,
J.
Qiu
,
G.-L.
Shentu
,
Q.
Zhang
,
X.
Dou
, and
J.-W.
Pan
,
Opt. Express
24
,
19322
19336
(
2016
).
13.
H.
Xia
,
M.
Shangguan
,
C.
Wang
,
G.-L.
Shentu
,
J.
Qiu
,
Q.
Zhang
,
X.
Dou
, and
J.-W.
Pan
,
Opt. Lett.
41
,
5218
5221
(
2016
).
14.
J.
Zhang
,
M. A.
Itzler
,
H.
Zbinden
, and
J.-W.
Pan
,
Light Sci. Appl.
4
,
e286
(
2015
).
15.
X.
Jiang
,
M. A.
Itzler
,
K.
O’Donnell
,
M.
Entwistle
, and
K.
Slomkowski
, “
InGaAs/InP negative feedback avalanche diodes (NFADs)
,”
Proc. SPIE.
8033
,
80330K
(
2011
).
16.
Z.
Yan
,
D. R.
Hamel
,
A. K.
Heinrichs
,
X.
Jiang
,
M. A.
Itzler
, and
T.
Jennewein
,
Rev. Sci. Instrum.
83
,
073105
(
2012
).
17.
T.
Lunghi
,
C.
Barreiro
,
O.
Guinnard
,
R.
Houlmann
,
X.
Jiang
,
M. A.
Itzler
, and
H.
Zbinden
,
J. Mod. Opt.
59
,
1481
(
2012
).
18.
B.
Korzh
,
N.
Walenta
,
T.
Lunghi
,
N.
Gisin
, and
H.
Zbinden
,
Appl. Phys. Lett.
104
,
081108
(
2014
).
19.
C.
Yu
,
M.
Shangguan
,
H.
Xia
,
J.
Zhang
,
X.
Dou
, and
J.-W.
Pan
,
Opt. Express
25
,
14611
14620
(
2017
).
20.
Y.
Dikmelik
and
F. M.
Davidson
,
Appl. Opt.
44
,
4946
4952
(
2005
).
You do not currently have access to this content.