In scanning tunneling microscopy, we witness in recent years a paradigm shift from “just imaging” to detailed spectroscopic measurements at the nanoscale and multi-tip scanning tunneling microscope (STM) is a technique following this trend. It is capable of performing nanoscale charge transport measurements like a “multimeter at the nanoscale.” Distance-dependent four-point measurements, the acquisition of nanoscale potential maps at current carrying nanostructures and surfaces, as well as the acquisition of IV curves of nanoelectronic devices are examples of the capabilities of the multi-tip STM technique. In this review, we focus on two aspects: How to perform the multi-tip STM measurements and how to analyze the acquired data in order to gain insight into nanoscale charge transport processes for a variety of samples. We further discuss specifics of the electronics for multi-tip STM and the properties of tips for multi-tip STM, and present methods for a tip approach to nanostructures on insulating substrates. We introduce methods on how to extract the conductivity/resistivity for mixed 2D/3D systems from four-point measurements, how to measure the conductivity of 2D sheets, and how to introduce scanning tunneling potentiometry measurements with a multi-tip setup. For the example of multi-tip measurements at freestanding vapor liquid solid grown nanowires, we discuss contact resistances as well as the influence of the presence of the probing tips on the four point measurements.

1.
T.
Kanagawa
,
R.
Hobara
,
I.
Matsuda
,
T.
Tanikawa
,
A.
Natori
, and
S.
Hasegawa
, “
Anisotropy in conductance of a quasi-one-dimensional metallic surface state measured by a square micro-four-point probe method
,”
Phys. Rev. Lett.
91
,
036805
(
2003
).
2.
I.
Matsuda
,
M.
Ueno
,
T.
Hirahara
,
R.
Hobara
,
H.
Morikawa
,
Ch.
Liu
, and
S.
Hasegawa
, “
Electrical resistance of a monatomic step on a crystal surface
,”
Phys. Rev. Lett.
93
,
236801
(
2004
).
3.
H.
Watanabe
,
C.
Manabe
,
T.
Shigematsu
, and
M.
Shimizu
, “
Dual-probe scanning tunneling microscope: Measuring a carbon nanotube ring transistor
,”
Appl. Phys. Lett.
78
,
2928
(
2001
).
4.
O.
Guise
,
J.
Levy
, and
J. T.
Yates
, “
Direct measurement of the direction of interface motion in the oxidation of metals and covalent solids Al(111) and Si(100) oxidation with O2 at 300 K
,”
Thin Solid Films
496
,
426
(
2006
).
5.
D. K.
Lim
,
O.
Kubo
,
Y.
Shingaya
,
T.
Nakayama
,
Y. H.
Kim
,
J. Y.
Lee
,
M.
Aono
,
H.
Lee
,
D.
Lee
, and
S.
Kim
, “
Low resistivity of Pt silicide nanowires measured using double-scanning-probe tunneling microscope
,”
Appl. Phys. Lett.
92
,
203114
(
2008
).
6.
S.
Higuchi
,
O.
Kubo
,
H.
Kuramochi
,
M.
Aono
, and
T.
Nakayama
, “
A quadruple-scanning-probe force microscope for electrical property measurements of microscopic materials
,”
Nanotechnology
22
,
285205
(
2011
).
7.
J.
Homoth
,
M.
Wenderoth
,
T.
Druga
,
L.
Winking
,
R. G.
Ulbrich
,
C. A.
Bobisch
,
B.
Weyers
,
A.
Bannani
,
E.
Zubkov
,
A. M.
Bernhart
,
M. R.
Kaspers
, and
R.
Möller
, “
Electronic transport on the nanoscale: Ballistic transmission and Ohms law
,”
Nano Lett.
9
,
1588
(
2009
).
8.
S.
Bauer
and
C. A.
Bobisch
, “
Nanoscale electron transport at the surface of a topological insulator
,”
Nat. Commun.
7
,
11381
(
2016
).
9.
M. K.
Yakes
,
D.
Gunlycke
,
J. L.
Tedesco
,
P. M.
Campbell
,
R. L.
Myers-Ward
,
C. R.
Eddy
, Jr.
,
D. K.
Gaskill
,
P. E.
Sheehan
, and
A. R.
Laracuente
, “
Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions
,”
Nano Lett.
10
,
1559
(
2010
).
10.
S.-H.
Ji
,
J. B.
Hannon
,
R. M.
Tromp
,
V.
Perebeinos
,
J.
Tersoff
, and
F. M.
Ross
, “
Atomic-scale transport in epitaxial graphene
,”
Nat. Mater.
11
,
114
(
2012
).
11.
C. M.
Polley
,
W. R.
Clarke
,
J. A.
Miwa
,
M. Y.
Simmons
, and
J. W.
Wells
, “
Microscopic four-point-probe resistivity measurements of shallow, high density doping layers in silicon
,”
Appl. Phys. Lett.
101
,
262105
(
2012
).
12.
C. M.
Polley
,
W. R.
Clarke
,
J. A.
Miwa
,
G.
Scappucci
,
J. W.
Wells
,
D. L.
Jaeger
,
M. R.
Bischof
,
R. F.
Reidy
,
B. P.
Gorman
, and
M.
Simmons
, “
Exploring the limits of n-type ultra-shallow junction formation
,”
ACS Nano
7
,
5499
(
2013
).
13.
M.
Hirose
,
E.
Tsunemi
,
K.
Kobayashi
, and
H.
Yamada
, “
Influence of grain boundary on electrical properties of organic crystalline grains investigated by dual-probe atomic force microscopy
,”
Appl. Phys. Lett.
103
,
173109
(
2013
).
14.
J.
Baringhaus
,
M.
Ruan
,
F.
Edler
,
A.
Tejeda
,
M.
Sicot
,
A.
Taleb-Ibrahimi
,
A. P.
Li
,
Z.
Jiang
,
E. H.
Conrad
,
C.
Berger
,
C.
Tegenkamp
, and
W. A.
de Heer
, “
Exceptional ballistic transport in epitaxial graphene nanoribbons
,”
Nature
506
,
349
(
2014
).
15.
L.
Barreto
,
L.
Kühnemund
,
F.
Edler
,
C.
Tegenkamp
,
J.
Mi
,
M.
Bremholm
,
B. B.
Iversen
,
C.
Frydendahl
,
M.
Bianchi
, and
P.
Hofmann
, “
Surface-dominated transport on a bulk topological insulator
,”
Nano Lett.
14
,
3755
(
2014
).
16.
B. V. C.
Martins
,
M.
Smeu
,
L.
Livadaru
,
H.
Guo
, and
R. A.
Wolkow
, “
Conductivity of Si(111)-(7 × 7): The role of a single atomic step
,”
Phys. Rev. Lett.
112
,
246802
(
2014
).
17.
M.
Wojtaszek
,
J.
Lis
,
R.
Zuzak
,
B.
Such
, and
M.
Szymonski
, “
Inversion layer on the Ge(001) surface from the four-probe conductance measurements
,”
Appl. Phys. Lett.
105
,
042111
(
2014
).
18.
M.
Kolmer
,
P.
Olszowski
,
R.
Zuzak
,
S.
Godlewski
,
C.
Joachim
, and
M.
Szymonski
, “
Two-probe STM experiments at the atomic level
,”
J. Phys.: Condens. Matter
29
,
444004
(
2017
).
19.
C.
Durand
,
P.
Capiod
,
M.
Berthe
,
J. P.
Nys
,
C.
Krzeminski
,
D.
Stievenard
,
C.
Delerue
, and
B.
Grandidier
, “
Nanoscale carrier multiplication mapping in a Si diode
,”
Nano Lett.
14
,
5636
(
2014
).
20.
A. M.
Lord
,
T. G.
Maffeis
,
O.
Kryvchenkova
,
R. J.
Cobley
,
K.
Kalna
,
D. M.
Kepaptsoglou
,
Q. M.
Ramasse
,
A. S.
Walton
,
M. B.
Ward
,
J.
Köble
, and
S. P.
Wilks
, “
Controlling the electrical transport properties of nanocontacts to nanowires
,”
Nano Lett.
15
,
4248
(
2015
).
21.
A. M.
Lord
,
J. E.
Evans
,
C. J.
Barnett
,
M. W.
Allen
,
A. R.
Barron
, and
S. P.
Wilks
, “
Surface sensitivity of four-probe STM resistivity measurements of bulk ZnO correlated to XPS
,”
J. Phys.: Condens. Matter
29
,
384001
(
2017
).
22.
S.
Just
,
M.
Blab
,
S.
Korte
,
V.
Cherepanov
,
H.
Soltner
, and
B.
Voigtländer
, “
Surface and step conductivities on Si(111) surfaces
,”
Phys. Rev. Lett.
115
,
066801
(
2015
).
23.
F.
Lüpke
,
M.
Eschbach
,
T.
Heider
,
M.
Lanius
,
P.
Schüffelgen
,
D.
Rosenbach
,
N.
von den Driesch
,
V.
Cherepanov
,
G.
Mussler
,
L.
Plucinski
,
D.
Grützmacher
,
C. M.
Schneider
, and
B.
Voigtländer
, “
Electrical resistance of individual defects at a topological insulator surface
,”
Nat. Commun.
8
,
15704
(
2017
).
24.
C.
Durand
,
X.-G.
Zhang
,
S. M.
Hus
,
C.
Ma
,
M. A.
McGuire
,
Y.
Xu
,
H.
Cao
,
I.
Miotkowski
,
Y. P.
Chen
, and
A.-P.
Li
, “
Differentiation of surface and bulk conductivities in topological insulators via four-probe spectroscopy
,”
Nano Lett.
16
,
2213
(
2016
).
25.
S. M.
Hus
,
X.-G.
Zhang
,
G. D.
Nguyen
,
W.
Ko
,
A. P.
Baddorf
,
Y. P.
Chen
, and
A. P.
Li
, “
Detection of the spin-chemical potential in topological insulators using spin-polarized four-probe STM
,”
Phys. Rev. Lett.
119
,
137202
(
2017
).
26.
J.
Yang
,
D.
Sordes
,
M.
Kolmer
,
D.
Martrou
, and
C.
Joachim
, “
Imaging, single atom contact and single atom manipulations at low temperature using the new ScientaOmicron LT-UHV-4 STM
,”
Eur. Phys. J.: Appl. Phys.
73
,
10702
(
2016
).
27.
G.
Rapenne
and
C.
Joachim
, “
The first nanocar race
,”
Nat. Rev. Mater.
2
,
17040
(
2017
).
28.
R.
Ma
,
Q.
Huan
,
L.
Wu
,
J.
Yan
,
W.
Guo
,
Y.-Y.
Zhang
,
S.
Wang
,
L.
Bao
,
Y.
Liu
,
S.
Du
,
S. T.
Pantelides
, and
H.-J.
Gao
, “
Direct four-probe measurement of grain-boundary resistivity and mobility in millimeter-sized graphene
,”
Nano Lett.
17
,
5291
(
2017
).
29.
K.
Li
,
C.
Zhang
,
Y.
Wu
,
W.
Lin
,
X.
Zheng
,
Y.
Zhou
,
S.
Lu
, and
J.
Kang
,
Nano Lett.
18
,
1724
(
2018
).
30.
See http://www.fz-juelich.de/conferences/4pp_workshop2018 for information about the workshop on multi-tip STM.
31.
P.
Hofmann
and
J. W.
Wells
, “
Surface sensitive conductance measurements
,”
J. Phys.: Condens. Matter
21
,
013003
(
2009
).
32.
T.
Nakayama
,
O.
Kubo
,
Y.
Shingaya
,
S.
Higuchi
,
T.
Hasegawa
,
C.-S.
Jiang
,
T.
Okuda
,
Y.
Kuwahara
,
K.
Takami
, and
M.
Aono
, “
Development and application of multipleprobe scanning probe microscopes
,”
Adv. Mater.
24
,
1675
(
2012
).
33.
A.-P.
Li
,
K. W.
Clark
,
X.-G.
Zhang
, and
A. P.
Baddorf
, “
Electron transport at the nanometerscale spatially revealed by fourprobe scanning tunneling microscopy
,”
Adv. Funct. Mater.
23
,
2509
(
2013
).
34.
T.
Xu
and
B.
Grandidier
, “
Electrical characterization of semiconductor nanowires by scanning-probe microscopy
,” in
Semiconductor Nanowires: Materials, Synthesis, Characterization and Applications
, edited by
J.
Arbiol
and
Q.
Xiong
(
Elsevier
,
2015
), pp.
277
304
, ISBN: 978-1-78242-253-2.
35.
I.
Miccoli
,
F.
Edler
,
H.
Pfnr
, and
C.
Tegenkamp
, “
The 100th anniversary of the four-point probe technique: The role of probe geometries in isotropic and anisotropic systems
,”
J. Phys.: Condens. Matter
27
,
223201
(
2015
).
36.
T.
Nakayama
,
O.
Kubo
,
Y.
Shingaya
,
S.
Higuchi
,
T.
Hasegawa
,
C.-S.
Jiang
,
T.
Okuda
,
Y.
Kuwahara
,
K.
Takami
, and
M.
Aono
, “
Multiple-probe scanning probe microscopes for nanoarchitectonic materials science
,”
Jpn. J. Appl. Phys., Part 1
55
,
1102A7
(
2016
).
37.
B.
Voigtländer
,
V.
Cherepanov
, and
P.
Coenen
, “
The multimeter at the nanoscale
,”
Vak. Forsch. Prax.
28
,
38
(
2016
).
38.
I.
Shiraki
,
F.
Tanabe
,
R.
Hobara
,
T.
Nagao
, and
S.
Hasegawa
, “
Independently driven four-tip probes for conductivity measurements in ultrahigh vacuum
,”
Surf. Sci.
493
,
633
(
2001
).
39.
H.
Grube
,
B. C.
Harrison
,
J.
Jia
, and
J. J.
Boland
, “
Stability, resolution, and tiptip imaging by a dual-probe scanning tunneling microscope
,”
Rev. Sci. Instrum.
72
,
4388
(
2001
).
40.
K.
Takami
,
M.
Akai-Kasaya
,
A.
Saito
,
M.
Aono
, and
Y.
Kuwahara
, “
Construction of independently driven double-tip scanning tunneling microscope
,”
Jpn. J. Appl. Phys., Part 2
44
,
L120
(
2005
).
41.
O.
Guise
,
H.
Marbach
, and
J. T.
Yates
, Jr.
, “
Development and performance of the nanoworkbench: A four tip STM for conductivity measurements down to submicrometer scales
,”
Rev. Sci. Instrum.
76
,
045107
(
2005
).
42.
W.
Yi
,
I. I.
Kaya
,
I. B.
Altfeder
,
I.
Appelbaum
,
D. M.
Chen
, and
V.
Narayanamurti
, “
Dual-probe scanning tunneling microscope for study of nanoscale metal-semiconductor interfaces
,”
Rev. Sci. Instrum.
76
,
063711
(
2005
).
43.
J. F.
Xu
,
P. M.
Thibado
, and
Z.
Ding
, “
4K, ultrahigh vacuum scanning tunneling microscope having two orthogonal tips with tunnel junctions as close as a few nanometers
,”
Rev. Sci. Instrum.
77
,
093703
(
2006
).
44.
R.
Hobara
,
N.
Nagamura
,
S.
Hasegawa
,
I.
Matsuda
,
Y.
Yamamoto
,
Y.
Miyatake
, and
T.
Nagamura
, “
Variable-temperature independently driven four-tip scanning tunneling microscope
,”
Rev. Sci. Instrum.
78
,
053705
(
2007
).
45.
V.
Cherepanov
,
E.
Zubkov
,
H.
Junker
,
S.
Korte
,
M.
Blab
,
P.
Coenen
, and
B.
Voigtländer
, “
Ultra compact multitip scanning tunneling microscope with a diameter of 50 mm
,”
Rev. Sci. Instrum.
83
,
033707
(
2012
).
46.
M.
Salomons
,
B. V. C.
Martins
,
J.
Zikovsky
, and
R. A.
Wolkow
, “
Four-probe measurements with a three-probe scanning tunneling microscope
,”
Rev. Sci. Instrum.
85
,
045126
(
2014
).
47.
See www.scientaomicron.com for information about commercial multi-tip STMs.
48.
See www.rhk-tech.com for information about commercial multi-tip STMs.
49.
See www.unisoku.com for information about commercial multi-tip STMs.
50.
See www.mprobes.com for information about commercial multi-tip STMs.
51.
T.-H.
Kim
,
Z.
Wang
,
J. F.
Wendelken
,
H. H.
Weitering
,
W.
Li
, and
A.-P.
Li
, “
A cryogenic Quadraprobe scanning tunneling microscope system with fabrication capability for nanotransport research
,”
Rev. Sci. Instrum.
78
,
123701
(
2007
).
52.
R.
Ma
,
Q.
Huan
,
L.
Wu
,
J.
Yan
,
Q.
Zou
,
A.
Wang
,
C.
Bobisch
,
L.
Bao
, and
H. J.
Gao
, “
Upgrade of a commercial four-probe scanning tunneling microscopy system
,”
Rev. Sci. Instrum.
88
,
063704
(
2017
).
53.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
(
Wiley-IEEE Press
,
2015
), ISBN: 978-0-471-73906-7.
54.
F.
Lüpke
,
D.
Cuma
,
S.
Korte
,
V.
Cherepanov
, and
B.
Voigtländer
, “
Four-point probe measurements using current probes with voltage feedback to measure electric potentials
,”
J. Phys.: Condens. Matter
30
,
054004
(
2018
).
55.
L. B.
Valdes
, “
Resistivity measurements on germanium for transistors
,”
Proc. IRE
42
,
420
(
1954
).
56.
J. W.
Wells
,
J. F.
Kallehauge
, and
Ph.
Hofmann
, “
Surface-sensitive conductance measurements on clean and stepped semiconductor surfaces: Numerical simulations of four point probe measurements
,”
Surf. Sci.
602
,
1742
(
2008
).
57.
S.
Just
,
H.
Soltner
,
S.
Korte
,
V.
Cherepanov
, and
B.
Voigtländer
, “
Surface conductivity of Si(100) and Ge(100) surfaces determined from four-point transport measurements using an analytical N-layer conductance model
,”
Phys. Rev. B
95
,
075310
(
2017
).
58.
F.
Krok
,
M. R.
Kaspers
,
A. M.
Bernhart
,
M.
Nikiel
,
B. R.
Jany
,
P.
Indyka
,
M.
Wojtaszek
,
R.
Mller
, and
C. A.
Bobisch
, “
Probing the electronic transport on the reconstructed Au/Ge(001) surface
,”
Beilstein J. Nanotechnol.
5
,
1463
(
2014
).
59.
A.
Many
,
Y.
Goldstein
, and
N. B.
Grover
,
Semiconductor Surfaces
(
North-Holland Publishing Co.
,
Amsterdam
,
1965
).
60.
H.
Lüth
,
Solid Surfaces, Interfaces and Thin Films
(
Springer
,
2015
).
61.
P. A.
Schumann
and
E. E.
Gardner
, “
Application of multilayer potential distribution to spreading resistance correction factors
,”
J. Electrochem. Soc.
116
,
87
(
1969
).
62.
J.
Lis
, “
Electric currents at semiconductor surfaces from the perspective of drift-diffusion equations
,”
Phys. Rev. B
95
,
235423
(
2017
).
63.
V. M.
Tatarnikov
, “
Use of probes for measuring the electrical conductance of anisotropic plates
,”
Meas. Tech.
13
,
877
(
1970
).
64.
P.
Jaschinsky
,
J.
Wensorra
,
M. I.
Lepsa
,
J.
Myslivecek
, and
B.
Voigtländer
, “
Nanoscale charge transport measurements using a double-tip scanning tunneling microscope
,”
J. Appl. Phys.
104
,
094307
(
2008
).
65.
J. P.
Ibe
,
P. P.
Bey
, Jr.
,
S. L.
Brandow
,
R. A.
Brizzolara
,
N. A.
Burnham
,
D. P.
DiLella
,
K. P.
Lee
,
C. R. K.
Marrian
, and
R. J.
Colton
, “
On the electrochemical etching of tips for scanning tunneling microscopy
,”
J. Vac. Sci. Technol., A
8
,
3570
(
1990
).
66.
S.
Yoshimoto
,
Y.
Murata
,
R.
Hobara
,
I.
Matsuda
,
M.
Kishida
,
H.
Konishi
,
T.
Ikuno
,
D.
Maeda
,
T.
Yasuda
,
S.
Honda
,
H.
Okado
,
K.
Oura
,
M.
Katayama
, and
S.
Hasegawa
, “
Electrical characterization of metal-coated carbon nanotube tips
,”
Jpn. J. Appl. Phys., Part 2
44
,
L1563
(
2005
).
67.
O.
Kubo
,
Y.
Shingaya
,
M.
Nakaya
,
M.
Aono
, and
T.
Nakayama
, “
Epitaxially grown WOx nanorod probes for sub-100 nm multiple-scanning-probe measurement
,”
Surf. Sci.
88
,
254101
(
2006
).
68.
S.
Yoshimoto
,
Y.
Murata
,
K.
Kubo
,
K.
Tomita
,
K.
Motoyoshi
,
T.
Kimura
,
H.
Okino
,
R.
Hobara
,
I.
Matsuda
,
S.
Honda
,
M.
Katayama
, and
S.
Hasegawa
, “
Four-point probe resistance measurements using PtIr-coated carbon nanotube tips
,”
Nano Lett.
7
,
956
(
2007
).
69.
B.
Voigtländer
,
Scanning Probe Microscopy: Atomic Force Microscopy and Scanning Tunneling Microscopy
(
Springer
,
New York, Berlin, Heidelberg
,
2015
), ISBN: 978-3-662-45240-0.
70.
R.
Hobara
,
S.
Yoshimoto
,
S.
Hasegawa
, and
K.
Sakamoto
, “
Dynamic electrochemical-etching technique for tungsten tips suitable for multi-tip scanning tunneling microscopes
,”
e-J. Surf. Sci. Nanotechnol.
5
,
94
(
2007
).
71.
W. D.
Pilkey
,
Formulas for Stress, Strain, and Structural Matrices
(
John Wiley & Sons
,
2008
), ISBN: 9780471032212.
72.
I.
Morawski
and
B.
Voigtländer
, “
Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications
,”
Rev. Sci. Instrum.
81
,
033703
(
2010
).
73.
I.
Morawski
,
R.
Spiegelberg
,
S.
Korte
, and
B.
Voigtländer
, “
Combined frequency modulated atomic force microscopy and scanning tunneling microscopy detection for multi-tip scanning probe microscopy applications
,”
Rev. Sci. Instrum.
86
,
123703
(
2015
).
74.
P.
Jaschinsky
,
P.
Coenen
,
G.
Pirug
, and
B.
Voigtländer
, “
Design and performance of a beetle-type double-tip scanning tunneling microscope
,”
Rev. Sci. Instrum.
77
,
093701
(
2006
).
75.
See http://www.fz-juelich.de/pgi/pgi-3/microscope for a movie showing a scanning STM tip imaged by an SEM.
76.

The sample was kindly provided by Grace Lu (NAMI group Nanoelectronics and Advanced Materials Innovations at the University of Southern California, Los Angeles).

77.

Due to the following argument an infinite capacitance can be assigned to two conductors in contact. An infinite amount of charge can be supplied without any voltage developing and due to C = Q/V the capacitance can be assigned as infinite.

78.
F.
Lüpke
,
S.
Just
,
M.
Eschbach
,
T.
Heider
,
E.
Mlynczak
,
M.
Lanius
,
P.
Schüffelgen
,
D.
Rosenbach
,
N.
von den Driesch
,
V.
Cherepanov
,
G.
Mussler
,
L.
Plucinski
,
D.
Grützmacher
,
C. M.
Schneider
,
F. S.
Tautz
, and
B.
Voigtländer
, “
In situ disentangling surface state transport channels of a topological insulator thin film by gating
,”
npj Quantum Mater.
3
,
46
(
2018
).
79.
L. J.
van der Pauw
, “
A method of measuring specific resistivity and Hall effect of discs of arbitrary shape
,”
Philips Res. Rep.
13
,
1
(
1958
).
80.
L. J.
van der Pauw
, “
A method of measuring the resistivity and Hall coefficient on lamellae of arbitrary shape
,”
Philips Tech. Rev.
20
,
220
(
1958
).
81.
R.
Rymaszewski
, “
Relationship between the correction factor of the four-point probe value and the selection of potential and current electrodes
,”
J. Phys. E: Sci. Instrum.
2
,
170
(
1969
).
82.
G.
Mussler
and
M.
Lanius
, private communication (
2018
).
83.
P.
Muralt
and
D. W.
Pohl
, “
Scanning tunneling potentiometry
,”
Appl. Phys. Lett.
48
,
514
(
1986
).
84.
R. M.
Feenstra
and
B. G.
Briner
, “
The search for residual resistivity dipoles by scanning tunneling potentiometry
,”
Superlattices Microstruct.
23
,
699
(
1998
).
85.
M.
Rozler
and
M. R.
Beasley
, “
Design and performance of a practical variable-temperature scanning tunneling potentiometry system
,”
Rev. Sci. Instrum.
79
,
073904
(
2008
).
86.
T.
Druga
,
M.
Wenderoth
,
J.
Homoth
,
M. A.
Schneider
, and
R. G.
Ulbrich
, “
A versatile high resolution scanning tunneling potentiometry implementation
,”
Rev. Sci. Instrum.
81
,
083704
(
2010
).
87.
A.
Bannani
,
C. A.
Bobisch
, and
R.
Möller
, “
Local potentiometry using a multiprobe scanning tunneling microscope
,”
Rev. Sci. Instrum.
79
,
083704
(
2008
).
88.
F.
Lüpke
,
S.
Korte
,
V.
Cherepanov
, and
B.
Voigtländer
, “
Scanning tunneling potentiometry implemented into a multi-tip setup by software
,”
Rev. Sci. Instrum.
86
,
123701
(
2015
).
89.
T.
Nakamura
,
R.
Yoshino
,
R.
Hobara
,
S.
Hasegawa
, and
T.
Hirah
, “
Development of a convenient in situ UHV scanning tunneling potentiometry system using a tip holder equipped with current-injection wires
,”
e-J. Surf. Sci. Nanotechnol.
14
,
216
(
2016
).
90.
R. S.
Wagner
and
W. C.
Ellis
, “
Vapor-liquid-solid mechanism of single crystal growth
,”
Appl. Phys. Lett.
4
,
89
(
1964
).
91.
S.
Korte
,
M.
Steidl
,
W.
Prost
,
V.
Cherepanov
,
B.
Voigtländer
,
W.
Zhao
,
P.
Kleinschmidt
, and
Th.
Hannappel
, “
Resistance and dopant profiling along freestanding GaAs nanowires
,”
Appl. Phys. Lett.
103
,
143104
(
2013
).
92.
A.
Nägelein
,
L.
Liborius
,
M.
Steidl
,
C.
Blumberg
,
P.
Kleinschmidt
,
A.
Poloczek
, and
T.
Hannappel
, “
Comparative analysis on resistance profiling along tapered semiconductor nanowires: Multi-tip technique versus transmission line method
,”
J. Phys.: Condens. Matter
29
,
394007
(
2017
).
93.
C.
Gutsche
,
I.
Regolin
,
K.
Blekker
,
A.
Lysov
,
W.
Prost
, and
F. J.
Tegude
, “
Controllable p-type doping of GaAs nanowires during vapor-liquid-solid growth
,”
J. Appl. Phys.
105
,
024305
(
2009
).
94.
A.
Nägelein
,
M.
Steidl
,
S.
Korte
,
B.
Voigtländer
,
W.
Prost
,
P.
Kleinschmidt
, and
Th.
Hannappel
, “
Investigation of charge carrier depletion in freestanding nanowires by a multi-probe scanning tunneling microscope
,”
Nano Res.
(published online,
2018
).
95.
See http://www.fz-juelich.de/pgi/pgi-3/mstm for a movie of four-point resistance measurements along a nanowire.
96.
R. M.
Feenstra
, “
A prospective: Quantitative scanning tunneling spectroscopy of semiconductor surfaces
,”
Surf. Sci.
603
,
2841
(
2009
).
97.
G.
Münnich
,
A.
Donarini
,
M.
Wenderoth
, and
J.
Repp
, “
Fixing the energy scale in scanning tunneling microscopy on semiconductor surfaces
,”
Phys. Rev. Lett.
111
,
216802
(
2013
).
98.
W.
Melitz
,
J.
Shen
,
A. C.
Kummel
, and
S.
Lee
, “
Kelvin probe force microscopy and its application
,”
Surf. Sci. Rep.
66
,
1
(
2011
).
99.
C.
Saunus
,
J. R.
Bindel
,
M.
Pratzer
, and
M.
Morgenstern
, “
Versatile scanning tunneling microscopy with 120 ps time resolution
,”
Appl. Phys. Lett.
102
,
051601
(
2013
).

Supplementary Material

You do not currently have access to this content.