We present an experimental apparatus to control and visualize the response of a liquid target to a laser-induced vaporization. We use a millimeter-sized drop as target and present two liquid-dye solutions that allow a variation of the absorption coefficient of the laser light in the drop by seven orders of magnitude. The excitation source is a Q-switched Nd:YAG laser at its frequency-doubled wavelength emitting nanosecond pulses with energy densities above the local vaporization threshold. The absorption of the laser energy leads to a large-scale liquid motion at time scales that are separated by several orders of magnitude, which we spatiotemporally resolve by a combination of ultra-high-speed and stroboscopic high-resolution imaging in two orthogonal views. Surprisingly, the large-scale liquid motion upon laser impact is completely controlled by the spatial energy distribution obtained by a precise beam-shaping technique. The apparatus demonstrates the potential for accurate and quantitative studies of laser-matter interactions.

1.
A.
Ashkin
and
J. M.
Dziedzic
,
Phys. Rev. Lett.
30
,
139
(
1973
).
2.
K.
Sakai
,
D.
Mizuno
, and
K.
Takagi
,
Phys. Rev. E
63
,
046302
(
2001
).
3.
A.
Casner
and
J.-P.
Delville
,
Phys. Rev. Lett.
87
,
054503
(
2001
).
4.
S. A.
Viznyuk
and
A. T.
Sukhodol’skiĭ
,
Sov. J. Quantum Electron.
18
,
489
(
1988
).
5.
H.
Chraïbi
and
J.-P.
Delville
,
Phys. Fluids
24
,
032102
(
2012
).
6.
7.
P.
Kafalas
and
A. P.
Ferdinand
,
Appl. Opt.
12
,
29
(
1973
).
8.
P.
Kafalas
and
J.
Herrmann
,
Appl. Opt.
12
,
772
(
1973
).
9.
R. G.
Pinnick
,
A.
Biswas
,
R. L.
Armstrong
,
S. G.
Jennings
,
J. D.
Pendleton
, and
G.
Fernández
,
Appl. Opt.
29
,
918
(
1990
).
10.
I.
Apitz
and
A.
Vogel
,
Appl. Phys. A
81
,
329
(
2005
).
11.
C.
Sun
,
E.
Can
,
R.
Dijkink
,
D.
Lohse
, and
A.
Prosperetti
,
J. Fluid Mech.
632
,
5
(
2009
).
12.
Y.
Tagawa
,
N.
Oudalov
,
C. W.
Visser
,
I. R.
Peters
,
D.
van der Meer
,
C.
Sun
,
A.
Prosperetti
, and
D.
Lohse
,
Phys. Rev. X
2
,
031002
(
2012
).
13.
G.
Lajoinie
,
E.
Gelderblom
,
C.
Chlon
,
M.
Böhmer
,
W.
Steenbergen
,
N.
de Jong
,
S.
Manohar
, and
M.
Versluis
,
Nat. Commun.
5
,
3671
(
2014
).
14.
J.-Z.
Zhang
,
J. K.
Lam
,
C. F.
Wood
,
B.-T.
Chu
, and
R. K.
Chang
,
Appl. Opt.
26
,
4731
(
1987
).
15.
A.
Vogel
,
S.
Busch
, and
U.
Parlitz
,
J. Acoust. Soc. Am.
100
,
148
(
1996
).
16.
C.
Favre
,
V.
Boutou
,
S.
Hill
,
W.
Zimmer
,
M.
Krenz
,
H.
Lambrecht
,
J.
Yu
,
R.
Chang
,
L.
Woeste
, and
J.-P.
Wolf
,
Phys. Rev. Lett.
89
,
035002
(
2002
).
17.
A.
Lindinger
,
J.
Hagen
,
L. D.
Socaciu
,
T. M.
Bernhardt
,
L.
Wöste
,
D.
Duft
, and
T.
Leisner
,
Appl. Opt.
43
,
5263
(
2004
).
18.
A.
Vogel
,
J.
Noack
,
G.
Hüttman
, and
G.
Paltauf
,
Appl. Phys. B
81
,
1015
(
2005
).
19.
S. T.
Thoroddsen
,
K.
Takehara
,
T. G.
Etoh
, and
C.-D.
Ohl
,
Phys. Fluids
21
,
112101
(
2009
).
20.
Y. E.
Geints
,
A. M.
Kabanov
,
G. G.
Matvienko
,
V. K.
Oshlakov
,
A. A.
Zemlyanov
,
S. S.
Golik
, and
O. A.
Bukin
,
Opt. Lett.
35
,
2717
(
2010
).
21.
A.
Vogel
and
V.
Venugopalan
,
Chem. Rev.
103
,
577
(
2003
).
22.
R. R.
Gattass
and
E.
Mazur
,
Nat. Photonics
2
,
219
(
2008
).
23.
C. W.
Visser
,
R.
Pohl
,
C.
Sun
,
G.-W.
Römer
,
B.
Huis in ‘t Veld
, and
D.
Lohse
,
Adv. Mater.
27
,
4087
(
2015
).
25.
J. L.
Norris
and
R. M.
Caprioli
,
Chem. Rev.
113
,
2309
(
2013
).
26.
Pulsed Laser Deposition of Thin Films: Applications-Led Growth of Functional Materials
, edited by
R.
Eason
(
Wiley-Interscience
,
Hoboken, New Jersey
,
2007
).
27.
F.-X.
Rong
,
Appl. Phys. Lett.
67
,
1022
(
1995
).
28.
J.
Benschop
,
V.
Banine
,
S.
Lok
, and
E.
Loopstra
,
J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.
26
,
2204
(
2008
).
29.
H.
Mizoguchi
,
T.
Abe
,
Y.
Watanabe
,
T.
Ishihara
,
T.
Ohta
,
T.
Hori
,
A.
Kurosu
,
H.
Komori
,
K.
Kakizaki
,
A.
Sumitani
,
O.
Wakabayashi
,
H.
Nakarai
,
J.
Fujimoto
, and
A.
Endo
,
Proc. SPIE
7636
,
763608
(
2010
).
30.
V. Y.
Banine
,
K. N.
Koshelev
, and
G. H. P. M.
Swinkels
,
J. Phys. D: Appl. Phys.
44
,
253001
(
2011
).
31.
G.
O’Sullivan
,
B.
Li
,
R.
D’Arcy
,
P.
Dunne
,
P.
Hayden
,
D.
Kilbane
,
T.
McCormack
,
H.
Ohashi
,
F.
O’Reilly
,
P.
Sheridan
,
E.
Sokell
,
C.
Suzuki
, and
T.
Higashiguchi
,
J. Phys. B: At., Mol. Opt. Phys.
48
,
144025
(
2015
).
32.
J.
Wang
,
R. C. Y.
Auyeung
,
H.
Kim
,
N. A.
Charipar
, and
A.
Piqué
,
Adv. Mater.
22
,
4462
(
2010
).
33.
T.
Inui
,
R.
Mandamparambil
,
T.
Araki
,
R.
Abbel
,
H.
Koga
,
M.
Nogi
, and
K.
Suganuma
,
RSC Adv.
5
,
77942
(
2015
).
34.
F.
Guillemot
,
A.
Souquet
,
S.
Catros
,
B.
Guillotin
,
J.
Lopez
,
M.
Faucon
,
B.
Pippenger
,
R.
Bareille
,
M.
Rémy
,
S.
Bellance
,
P.
Chabassier
,
J.
Fricain
, and
J.
Amédée
,
Acta Biomater.
6
,
2494
(
2010
).
35.
H.
Weichel
,
Laser Beam Propagation in the Atmosphere
(
SPIE Press
,
1990
).
36.
E.
Hecht
,
Optics
(
Addison-Wesley
,
2002
).
37.
38.
A.
van der Bos
,
A.
Zijlstra
,
E.
Gelderblom
, and
M.
Versluis
,
Exp. Fluids
51
,
1283
(
2011
).
39.
A.
Vogel
,
I.
Apitz
,
S.
Freidank
, and
R.
Dijkink
,
Opt. Lett.
31
,
1812
(
2006
).
40.
C.
Clanet
and
J. C.
Lasheras
,
J. Fluid Mech.
383
,
307
(
1999
).
41.
J.
Eggers
and
E.
Villermaux
,
Rep. Prog. Phys.
71
,
036601
(
2008
).
42.
P.-G.
de Gennes
,
F.
Brochard-Wyart
, and
D.
Quéré
,
Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(
Springer
,
New York
,
2002
).
43.
R. M.
Pope
and
E. S.
Fry
,
Appl. Opt.
36
,
8710
(
1997
).
44.
A. L.
Klein
,
W.
Bouwhuis
,
C. W.
Visser
,
H.
Lhuissier
,
C.
Sun
,
J. H.
Snoeijer
,
E.
Villermaux
,
D.
Lohse
, and
H.
Gelderblom
,
Phys. Rev. Appl.
3
,
044018
(
2015
).
45.
C.
Gayathri
and
A.
Ramalingam
,
Spectrochim. Acta, Part A
68
,
578
(
2007
).
46.
2-Butanone (Material Safety Data Sheet) (Sigma-Aldrich,
2016
).
47.
D.
Sen
,
S.
Mazumder
,
J. S.
Melo
,
A.
Khan
,
S.
Bhattyacharya
, and
S. F.
D’Souza
,
Langmuir
25
,
6690
(
2009
).
48.
A. L.
Klein
, “MATLAB-Devices: Collection of classes to control lab instruments such as a pulse delay generator or a syringe pump within MATLAB,” https://github.com/alexludwigklein/MATLAB-Devices (
2017
).
49.
A. L.
Klein
, “MATLAB-BeamProfiles: Collection of files and classes to handle planar laser beam profiles according to ISO 11146 and study their interaction with a spherical drop,” https://github.com/alexludwigklein/MATLAB-BeamProfiles (
2017
).
50.
A. L.
Klein
, “MATLAB-Videos: Collection of classes, functions and scripts to analyse movies in MATLAB including memory mapping for huge files,” https://github.com/alexludwigklein/MATLAB-Videos (
2017
).
51.
A. L.
Klein
,
C. W.
Visser
,
W.
Bouwhuis
,
H.
Lhuissier
,
C.
Sun
,
J. H.
Snoeijer
,
E.
Villermaux
,
D.
Lohse
, and
H.
Gelderblom
,
Phys. Fluids
27
,
091106
(
2015
).
52.
H.
Gelderblom
,
H.
Lhuissier
,
A. L.
Klein
,
W.
Bouwhuis
,
D.
Lohse
,
E.
Villermaux
, and
J. H.
Snoeijer
,
J. Fluid Mech.
794
,
676
(
2016
).
53.
D.
Kurilovich
,
A. L.
Klein
,
F.
Torretti
,
A.
Lassise
,
R.
Hoekstra
,
W.
Ubachs
,
H.
Gelderblom
, and
O. O.
Versolato
,
Phys. Rev. Appl.
6
,
014018
(
2016
).
54.
A. L.
Klein
,
C. W.
Visser
,
W.
Bouwhuis
,
H.
Lhuissier
,
C.
Sun
,
J. H.
Snoeijer
,
E.
Villermaux
,
D.
Lohse
, and
H.
Gelderblom
, “Milton van Dyke winner of the Gallery of Fluid Motion 2014: Laser impact on a drop,” https://www.youtube.com/watch?v=bRbHDtPbHe0 (
2014
).
55.
A. L.
Klein
,
J. H.
Snoeijer
,
D.
Lohse
, and
H.
Gelderblom
, “Fine Work winner of the Slow Motion Video Award 2016: Liquid Jellyfish & Piercing Drops,” https://www.youtube.com/watch?v=0Bv1JBU2ENo (
2016
).
56.
E.
Villermaux
,
Annu. Rev. Fluid Mech.
39
,
419
(
2007
).
57.
Lasers and laser-related equipment—Test methods for laser beam widths, divergence angles and beam propagation ratios—Part 1: Stigmatic and simple astigmatic beams
” (
2005
).
58.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media, Experimental Fluid Mechanics
(
Springer
,
Berlin, New York
,
2001
).
59.
P. K.
Kennedy
,
D. X.
Hammer
, and
B. A.
Rockwell
,
Prog. Quantum Electron.
21
,
155
(
1997
).
60.

The typical impulse I exerted on the drop by the 3% reflected light from the surface scales as IEr/c, with Er as the energy of the reflected light and c as the speed of light. This impulse would yield a typical drop speed U107 m/s. The impulse due to thermal radiation from the hot drop surface scales as I𝜖σT4R02τp/c with 𝜖 as the emissivity and σ as the Stefan-Boltzmann constant. This impulse would yield U1014 m/s.

61.
J.-P.
Delville
,
M.
Robert de Saint Vincent
,
R. D.
Schroll
,
H.
Chraïbi
,
B.
Issenmann
,
R.
Wunenburger
,
D.
Lasseux
,
W. W.
Zhang
, and
E.
Brasselet
,
J. Opt. A: Pure Appl. Opt.
11
,
034015
(
2009
).
You do not currently have access to this content.