An automated system was developed to measure the viscosity of fluids as a function of temperature using image analysis tracking software. An Ostwald viscometer was placed in a three-wall dewar in which ethylene glycol was circulated using a thermal bath. The system collected continuous measurements during both heating and cooling cycles exhibiting no hysteresis. The use of video tracking analysis software greatly reduced the measurement errors associated with measuring the time required for the meniscus to pass through the markings on the viscometer. The stability of the system was assessed by performing 38 consecutive measurements of water at 42.50 ± 0.05 °C giving an average flow time of 87.7 ± 0.3 s. A device was also implemented to repeatedly deliver a constant volume of liquid of 11.00 ± 0.03 ml leading to an average error in the viscosity of 0.04%. As an application, the system was used to measure the viscosity of two Li-ion battery electrolyte solvents from approximately 10 to 40 °C with results showing excellent agreement with viscosity values calculated using Gering’s Advanced Electrolyte Model (AEM).

1.
K. R.
Symon
, in
Introduction to the Mechanics of Continuous Media, Mechanics
, 2nd ed. (
Addison-Wesley
,
Reading, MA
,
1960
), Chap. 8.
2.
D. N.
Ku
, “
Blood flow in arteries
,”
Annu. Rev. Fluid Mech.
29
,
399
434
(
1997
).
3.
T. R.
Hoare
and
D. S.
Kohane
, “
Hydrogels in drug delivery: Progress and challenges
,”
Polymer
49
,
1993
2007
(
2008
).
4.
F. T.
Fraunfelder
, “
Extraocular fluid dynamics: How best to apply topical ocular medication
,”
Trans. Am. Ophthalmol. Soc.
74
,
457
487
(
1976
).
5.
N. M.
Davies
,
S. J.
Farr
,
J.
Hadgraft
, and
I. W.
Kellaway
, “
Evaluation of mucoadhesive polymers in ocular drug delivery. I. Viscous solutions
,”
Pharm. Res.
8
,
1039
1043
(
1991
).
6.
C. I.
Nindo
,
J.
Tang
,
J. R.
Powers
, and
P.
Singh
, “
Viscosity of blueberry and raspberry juices for processing applications
,”
J. Food Eng.
69
,
343
350
(
2005
).
7.
Z.-B.
Cai
,
Y.
Zhou
, and
J.
Qu
, “
Effect of oil temperature on tribological behaviour of a lubricated steel-steel contact
,”
Wear
332-333
,
1158
1163
(
2015
).
8.
J.
Qu
,
H.
Luo
,
M.
Chi
,
C.
Ma
,
P. J.
Blau
,
S.
Dai
, and
M. B.
Viola
, “
Comparison of an oil-miscible ionic liquid and ZDDP as a lubricant anti-wear additive
,”
Tribol. Int.
71
,
88
97
(
2004
).
9.
J. T.
Dudley
,
D. P.
Wilkinson
,
G.
Thomas
,
R.
LeVae
,
S.
Woo
,
H.
Blom
,
C.
Horvath
,
M. W.
Juzkow
,
B.
Denis
,
P.
Juric
,
P.
Aghakian
, and
J. R.
Dahn
, “
Conductivity of electrolytes for rechargeable lithium batteries
,”
J. Power Sources
35
,
59
82
(
1991
).
10.
A.
Guerfi
,
M.
Dontigny
,
P.
Charest
,
M.
Petitclerc
,
M.
Legacé
,
A.
Vijh
, and
K.
Zaghib
, “
Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance
,”
J. Power Sources
195
,
845
852
(
2010
).
11.
A.
Guerfi
,
M.
Dontigny
,
Y.
Kobayashi
,
A.
Vijh
, and
K.
Zaghib
, “
Investigations on some electrochemical aspects of lithium-ion ionic liquid/gel polymer battery systems
,”
J. Solid State Electrochem.
13
,
1003
1014
(
2009
).
12.
D.
Aurbach
,
Y.
Talyosef
,
B.
Markovsky
,
E.
Markevich
,
E.
Zinigrad
,
L.
Asraf
,
J. S.
Gnanaraj
, and
H. J.
Kim
, “
Design of electrolyte solutions for Li and Li-ion batteries: A review
,”
Electrochim. Acta
50
,
247
254
(
2004
).
13.
K.
Xu
, “
Electrolytes and interphases in Li-ion batteries and beyond
,”
Chem. Rev.
114
,
11503
11618
(
2014
).
14.
Y.
Tang
,
Y.
Zhang
,
W.
Li
,
B.
Ma
, and
X.
Chen
, “
Rational material design for ultrafast rechargeable lithium-ion batteries
,”
Chem. Soc. Rev.
44
,
5926
5940
(
2015
).
15.
A.
Demirbas
, “
Progress and recent trends in biodiesel fuels
,”
Energy Convers. Manage.
50
,
14
34
(
2009
).
16.
S.
Larter
,
J.
Adams
,
I. D.
Gates
,
B.
Bennett
, and
H.
Huang
,
J. Can. Pet. Technol.
47
,
52
61
(
2008
).
17.
A. L.
Tomren
and
T.
Barth
, “
Comparison of partial least squares calibration models of viscosity, acid number and asphaltene content in petroleum, based on GC and IR data
,”
Fuel
120
,
8
21
(
2014
).
18.
G.
Knothe
and
K. R.
Steidley
, “
Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components
,”
Fuel
84
,
1059
1065
(
2005
).
19.
M.
Balat
and
H.
Balat
, “
Progress in biodiesel processing
,”
Appl. Energy
87
1815
1835
(
2010
).
20.
H. A.
Barnes
and
Q. D.
Nguyen
, “
Rotating vane rheometry—A review
,”
J. Non-Newtonian Fluid Mech.
98
,
1
14
(
2001
).
21.
L. M.
Diamante
and
T.
Lan
, “
Absolute viscosities of vegetable oils at different temperatures and shear rate range of 64.5–4835 s−1
,”
J. Food Process.
2014
,
1
6
.
22.
D. S.
Viswanath
,
T. K.
Ghosh
,
D. H. L.
Prasad
,
N. V. K.
Dutt
, and
K. Y.
Rani
, “
Viscometers
,” in
Viscosity of Liquids: Theory, Estimation, Experiment, and Data
(
Springer
,
Dordrecht, The Netherlands
,
2007
), Chap. 2.
23.
J.
Kestin
and
G. F.
Newell
, “
Theory of oscillation type viscometers: The oscillating cup
,”
Z. Angew. Math. Phys.
8
,
433
449
(
1957
).
24.
K.
Häusler
,
W. H.
Reinhart
,
P.
Schaller
,
J.
Dual
,
J.
Goodbread
, and
M.
Sayir
, “
A newly designed oscillating viscometer for blood viscosity measurements
,”
Biorheology
33
,
397
404
(
1996
).
25.
J.
Cheng
,
J.
Gröbner
,
N.
Hort
,
K. U.
Kainer
, and
R.
Schmid-Fetzer
, “
Measurement and calculation of the viscosity of metals—A review of the current status and developing trends
,”
Meas. Sci. Technol.
25
,
062001
(
2014
).
26.
W. P.
Mason
,
W. O.
Baker
,
H. J.
McSkimin
, and
J. H.
Heiss
, “
Measurement of shear elasticity and viscosity of liquids at ultrasonic frequencies
,”
Phys. Review
75
,
936
946
(
1949
).
27.
R.
Saggin
and
J. N.
Coupland
, “
Oil viscosity measurement by ultrasonic reflectance
,”
J. Am. Oil Chem. Soc.
78
,
509
511
(
2001
).
28.
V. V.
Shah
and
K.
Balasubramaniam
, “
Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave
,”
Ultrasonics
38
,
921
927
(
2000
).
29.
R. F.
Brooks
,
A. T.
Dinsdale
, and
P. N.
Quested
, “
The measurement of viscosity of alloys—A review of methods, data, and models
,”
Meas. Sci. Technol.
16
,
354
362
(
2005
).
30.
P.
Ekwall
and
P.
Holmberg
, “
The properties and structures of aqueous sodium caprylate solutions
,”
Acta Chem. Scand.
19
,
455
468
(
1965
).
31.
A.
Kumagai
and
S.
Takahashi
, “
Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K
,”
Int. J. Thermophys.
12
,
105
117
(
1991
).
32.
S.
Kim
,
Y. I.
Cho
,
W. N.
Hogenauer
, and
K. R.
Kensey
, “
A method of isolating surface tension and yield stress effects in a U-shape scanning capillary-tube viscometer using a Casson model
,”
J. Non-Newtonian Fluid Mech.
103
,
205
219
(
2002
).
33.
W.
Ostwald
,
Grundriss der Allgemeinen Chemie
, 2nd Aufl. (
Verlag Von Wilhelm Engelmann
,
1891
) Reference for the Ostwald viscometer.
34.
D. W.
Plungis
,
C. S.
Seymour
, and
W.
Higgins
, “
Timer trigger for capillary tube viscometer and method of measuring oil properties
,” U.S. patent 4,616,503 A (
22 March 1985
).
35.
C.
Aritomi
, “
Automatic measurement of viscosity
,” U.S. patent 3,713,328 (
30 January 1973
).
36.
S. J.
Gosling
and
I.
Mylrea
, “
Viscometer and a method for operating the same
,” U.S. patent 8,806,921 B2 (
6 May 2010
).
37.
J. M.
Virloget
, “
Level detecting device
,” U.S. patent 3,908,441 (
30 September 1975
).
38.
J. J.
Heigl
,
S.
Hills
,
G. E.
Conklin
,
Stanhope
, and
J. A.
Wilson
, “
Automatic viscometer and process of using same
,” US. patent No. 3,071,961 (
8 January 1963
).
39.
R. L.
Osborne
, “
Automated ultrasonic solution viscometer
,” U.S. patent 4,441,358 (
10 April 1984
).
40.
J.R.
Glass
, “
Automatic viscometer with multiple capillary viscometer tube
,” U.S. patent 3,798,960 (
26 March 1974
).
41.
A.
Rosenfeld
and
A.
Kak
,
Digital Picture Processing
(
Academic Press
,
1982
), ISBN 0-12-597301-2.
42.
P.
Meer
,
D.
Mintz
,
A.
Rosenfeld
, and
D. Y.
Kim
, “
Robust regression methods for computer vision: A review
,”
Int. J. Comput. Vision
6
(
1
),
59
70
(
1991
).
43.
R. J.
Schalkoff
,
Digital Image Processing and Computer Vision
(
John Wiley & Sons Australia, Limited
,
1989
).
44.
L. G.
Shapiro
and
G. C.
Stockman
,
Computer Vision
(
Prentice Hall
,
2001
).
45.
I.
Culjak
,
D.
Abram
,
T.
Pribanic
,
H.
Dzapo
, and
M.
Cifrek
, “
A brief introduction to openCV
,” in
Proceedings of the 35th International Convention MIPRO
(
IEEE
,
2012
), pp.
2142
2147
.
46.
G.
Bradski
and
A.
Kaehler
,
Learning OpenCV
(
O’Reilly Media
,
Sebastopol, CA
,
2008
).
47.
K. L.
Gering
, “
Prediction of electrolyte viscosity for aqueous and non-aqueous systems: Results from a molecular model based on ion solvation and a chemical physics framework
,”
Electrochim. Acta
51
,
3125
3138
(
2006
);
K. L.
Gering
, “
Prediction of electrolyte conductivity: Results from a generalized molecular model based on ion solvation and a chemical physics framework
,”
Electrochim. Acta
225
,
175–189
(
2017
).
48.
J.
Kestin
,
M.
Sokolov
, and
W. A.
Wakeham
, “
Viscosity of liquid water in the range −8 °C–150 °C
,”
J. Phys. Chem. Ref. Data
7
,
941
948
(
1978
).
49.
S. C.
McCutcheon
,
J. L.
Martin
,
T. O.
Barnwell
, and
D. R.
Maidment
, “
Water quality
,” in
Handbook of Hydrology
(
McGraw-Hill
,
New York, NY
1993
), Chap. 11.3.
You do not currently have access to this content.