Glass formation and glassy behavior remain as the important areas of investigation in soft matter physics with many aspects which are still not completely understood, especially at the nanometer size-scale. In the present work, we show an extension of the “nanobubble inflation” method developed by O’Connell and McKenna [Rev. Sci. Instrum. 78, 013901 (2007)] which uses an interferometric method to measure the topography of a large array of 5μm sized nanometer thick films subjected to constant inflation pressures during which the bubbles grow or creep with time. The interferometric method offers the possibility of making measurements on multiple bubbles at once as well as having the advantage over the AFM methods of O’Connell and McKenna of being a true non-contact method. Here we demonstrate the method using ultra-thin films of both poly(vinyl acetate) (PVAc) and polystyrene (PS) and discuss the capabilities of the method relative to the AFM method, its advantages and disadvantages. Furthermore we show that the results from experiments on PVAc are consistent with the prior work on PVAc, while high stress results with PS show signs of a new non-linear response regime that may be related to the plasticity of the ultra-thin film.

1.
J. L.
Keddie
,
R. A. L.
Jones
, and
R. A.
Cory
,
Europhys. Lett.
27
,
59
(
1994
).
2.
S.
Lun
,
M. V.
Massa
,
K.
Dalnoki-Veress
,
H. R.
Brown
, and
R. A. L.
Jones
,
Phys. Rev. Lett.
94
,
127801
(
2005
).
3.
J.
Baschnagel
and
F.
Varnik
,
J. Phys.: Condens. Matter
17
,
R851
(
2005
).
4.
M.
Chowdhury
,
P.
Freyberg
,
F.
Ziebert
,
A. C.-M.
Yang
,
U.
Steiner
, and
G.
Reiter
,
Phys. Rev. Lett.
109
,
136102
(
2012
).
5.
M.
Alcoutlabi
and
G. B.
McKenna
,
J. Phys.: Condens. Matter
17
,
R461
(
2005
).
6.
J.
Wang
and
G. B.
McKenna
,
Macromolecules
46
,
2485
(
2013
).
7.
J.
Wang
and
G. B.
McKenna
,
J. Polym. Sci., Part B: Polym. Phys.
53
,
1559
(
2015
).
8.
J.
Wang
and
G. B.
McKenna
,
J. Polym. Sci., Part B: Polym. Phys.
51
,
1343
(
2013
).
9.
K.
Dalnoki-Veress
,
J. A.
Forrest
,
C.
Murray
,
C.
Gigault
, and
J. R.
Dutcher
,
Phys. Rev. E
63
,
031801
(
2001
).
10.
J. A.
Forrest
,
K.
Dalnoki-Veress
, and
J. R.
Dutcher
,
Phys. Rev. E
56
,
5705
(
1997
).
11.
H.
Bodiguel
and
C.
Fretigny
,
Eur. Phys. J. E
19
,
185
(
2006
).
12.
P. A.
O’Connell
and
G. B.
McKenna
,
Rev. Sci. Instrum.
78
,
013901
(
2007
).
13.
S.
Xu
,
P. A.
O’Connell
,
G. B.
McKenna
, and
S.
Castagnet
,
J. Polym. Sci., Part B: Polym. Phys.
50
,
466
(
2011
).
14.
P.
O’Connell
and
G.
McKenna
,
Eur. Phys. J. E
20
,
143
(
2006
).
15.
S.
Xu
,
P. A.
O’Connell
, and
G. B.
McKenna
,
J. Phys. Chem.
132
,
184902
(
2010
).
16.
P. A.
O’Connell
,
S. A.
Hutcheson
, and
G. B.
McKenna
,
J. Polym. Sci., Part B: Polym. Phys.
46
,
1952
(
2008
).
17.
J. A.
Forrest
and
K.
Dalnoki-Veress
,
Adv. Colloid Interface Sci.
94
,
167
(
2001
).
18.
A. E.
Green
,
Large Elastic Deformations
(
Oxford University Press
,
London
,
1970
).
19.
M. P. D.
Carmo
,
Differential Geometry of Curves and Surfaces
(
Prentice-Hall
,
1976
).
20.
E.
Riande
,
R.
Diaz-Calleja
,
M.
Prolongo
,
R.
Masegosa
, and
C.
Salom
,
Polymer Viscoelasticity: Stress and Strain in Practice
(
CRC Press/Marcel Dekker
,
New York
,
2000
).
21.
See https://www.aquamarijn.nl for information about substrates used in the experiment (last accessed
November 28, 2016
).
22.
P. C.
Montgomery
,
D.
Montaner
, and
F.
Salzenstein
,
Proc. SPIE
8430
,
843014
(
2012
).
23.
P. C.
Montgomery
,
A.
Leong-Hoi
,
F.
Anstotz
,
D.
Mitev
,
L.
Pramatarova
, and
O.
Haeberlé
,
J. Phys.: Conf. Ser.
682
,
012010
(
2016
).
24.
P.
de Groot
,
Adv. Opt. Photonics
7
,
1
(
2015
).
25.
O.
Perrot
,
L.
Guinvarc’h
,
D.
Benhaddou
,
P.
Montgomery
,
R.
Rimet
,
B.
Boulard
, and
C.
Jacoboni
,
J. Non-Cryst. Solids
184
,
257
(
1995
).
26.
A.
Benatmane
,
P. C.
Montgomery
,
E.
Fogarassy
, and
D.
Zahorski
,
Appl. Surf. Sci.
208-209
,
189
(
2003
).
27.
J.
Schmit
,
J.
Reed
,
E.
Novak
, and
J. K. J.
Gimzewski
,
J. Opt. A: Pure Appl. Opt.
10
,
064001
(
2008
).
28.
P. C.
Montgomery
,
M.
Guellil
,
P.
Pfeiffer
,
B.
Serio
,
F.
Anstotz
,
L.
Pramatarova
, and
S.
Roques
,
J. Phys.: Conf. Ser.
558
,
012005
(
2014
).
29.
P.
de Groot
,
Handbook of Optical Metrology: Principles and Applications
(
CRC Press
,
Boca Raton
,
2015
).
30.
P. C.
Montgomery
,
P.
Chapuis
,
A.
Leong-Hoï
,
F.
Anstotz
,
A.
Rubin
,
J.
Baschnagel
,
C.
Gauthier
,
G.
Reiter
, and
G. B.
McKenna
,
J. Phys.: Conf. Ser.
780
,
012003
(
2017
).
31.
P.
Hariharan
,
B. F.
Oreb
, and
T.
Eiju
,
Appl. Opt.
26
,
2504
(
1987
).
32.
C. J. R.
Sheppard
and
K. G.
Larkin
,
Appl. Opt.
34
,
4731
(
1995
).
33.
A.
Harasaki
and
J. C.
Wyant
,
Appl. Opt.
39
,
2101
(
2000
).
34.
P. C.
Montgomery
,
F.
Salzenstein
,
D.
Montaner
,
B.
Serio
, and
P.
Pfeiffer
,
Proc. SPIE
8788
,
87883G
(
2013
).
35.
I.
Danaila
,
P.
Joly
,
S. M.
Kaber
, and
M.
Postel
,
Introduction au Calcul Scientifique par la Pratique
(
Dunod
,
2005
), ISBN: 2-10-0048709-4.
36.
P. A.
O’Connell
and
G. B.
McKenna
,
Scanning
30
,
184
(
2008
).
37.
P. A.
O’Connell
and
G. B.
McKenna
,
Science
307
,
1760
(
2005
).
38.
R.
Schapery
,
Polym. Eng. Sci.
9
,
295
(
1969
).
You do not currently have access to this content.