We report on the design and commissioning of a new spectrometer for muon-spin relaxation/rotation studies installed at the Swiss Muon Source (SμS) of the Paul Scherrer Institute (PSI, Switzerland). This new instrument is essentially a new design and replaces the old general-purpose surface-muon (GPS) instrument that has been for long the workhorse of the μSR user facility at PSI. By making use of muon and positron detectors made of plastic scintillators read out by silicon photomultipliers, a time resolution of the complete instrument of about 160 ps (standard deviation) could be achieved. In addition, the absence of light guides, which are needed in traditionally built μSR instrument to deliver the scintillation light to photomultiplier tubes located outside magnetic fields applied, allowed us to design a compact instrument with a detector set covering an increased solid angle compared with the old GPS.

1.
A.
Schenck
,
Muon Spin Rotation Spectroscopy: Principles and Applications in Solid State Physics
(
Hilger
,
Bristol
,
1985
).
2.
3.
S. J.
Blundell
,
Contemp. Phys.
40
,
175
(
1999
).
4.
A.
Yaouanc
and
P.
Dalmas de Réotier
,
Muon Spin Rotation, Relaxation and Resonance
(
Oxford University Press
,
Oxford
,
2011
).
5.
R. E.
Turner
,
Phys. Rev. B
31
,
112
(
1985
).
6.
See https://www.psi.ch/smus for a detailed list of publications.
7.
7.
A. E.
Pifer
,
T.
Bowen
, and
K. R.
Kendall
,
Nucl. Instrum. Methods
135
,
39
(
1976
);
7.
T.
Bowen
,
Phys. Today
38
(
7
),
22
(
1985
).
8.
A.
Amato
and
D.
Andreica
, in
Encyclopedia of Condensed Matter Physics
, edited by
G. F.
Bassani
,
P.
Wyder
, and
G.
Liedl
(
Elsevier
,
Oxford
,
2005
), p.
41
.
9.
J. L.
Beveridge
,
J.
Doornbos
,
D. M.
Garner
,
D. J.
Arseneau
,
I. D.
Reid
, and
M.
Senba
,
Nucl. Instrum. Methods Phys. Res., Sect. A
240
,
316
(
1985
).
10.
A.
Hillier
,
D. J.
Adams
,
P. J.
Baker
,
A.
Bekasovs
,
F. C.
Coomer
,
S. P.
Cottrell
,
S. D.
Higgins
,
S. J. S.
Jago
,
K. G.
Jones
,
J. S.
Lord
,
A.
Markvardsen
,
P. G.
Parker
,
J. N. T.
Peck
,
F. L.
Pratt
,
M. T. F.
Telling
, and
R. E.
Williamson
,
J. Phys.: Conf. Ser.
551
,
012067
(
2014
).
11.
Y.
Miyake
,
K.
Shimomura
,
N.
Kawamura
,
P.
Strasser
,
A.
Koda
,
H.
Fujimori
,
Y.
Ikedo
,
S.
Makimura
,
Y.
Kobayashi
,
J.
Nakamura
,
K.
Kojima
,
T.
Adachi
,
R.
Kadono
,
S.
Takeshita
,
K.
Nishiyama
,
W.
Higemoto
,
T.
Ito
,
K.
Nagamine
,
H.
Ohata
,
Y.
Makida
,
M.
Yoshida
,
T.
Okamura
,
R.
Okada
, and
T.
Ogitsu
,
J. Phys.: Conf. Ser.
551
,
012061
(
2014
).
12.
J. S.
Lord
,
I.
McKenzie
,
P. J.
Baker
,
S. J.
Blundell
,
S. P.
Cottrell
,
S. R.
Giblin
,
J.
Good
,
A. D.
Hillier
,
B. H.
Holsman
,
P. J. C.
King
,
T.
Lancaster
,
R.
Mitchell
,
J. B.
Nightingale
,
M.
Owczarkowski
,
S.
Poli
,
F. L.
Pratt
,
N. J.
Rhodes
,
R.
Scheuermann
, and
Z.
Salman
,
Rev. Sci. Instrum.
82
,
073904
(
2011
).
13.
See http://musr.ca for a description of the TRIUMF facility.
14.
J. H.
Brewer
,
Hyperfine Interact.
230
,
35
(
2015
).
15.
A.
Stoykov
,
R.
Scheuermann
,
K.
Sedlak
,
T.
Shiroka
, and
V.
Zhuk
,
Physica B
404
,
986
(
2009
).
16.
K.
Sedlak
,
T.
Shiroka
,
A.
Stoykov
, and
R.
Scheuermann
,
Physica B
404
,
974
(
2009
).
17.
K.
Sedlak
,
R.
Scheuermann
,
A.
Stoykov
, and
A.
Amato
,
Physica B
404
,
970
(
2009
).
18.
A.
Stoykov
,
R.
Scheuermann
, and
K.
Sedlak
,
Nucl. Instrum. Methods Phys. Res., Sect. A
695
,
202
(
2012
).
19.
A.
Stoykov
,
R.
Scheuermann
,
K.
Sedlak
,
J.
Rodriguez
,
U.
Greuter
, and
A.
Amato
,
Phys. Procedia
30
,
7
(
2012
).
20.
P. W.
Cattaneo
,
M.
De Gerone
,
F.
Gatti
,
M.
Nishimura
,
W.
Ootani
,
M.
Rossella
, and
Y.
Uchiyama
,
IEEE Trans. Nucl. Sci.
61
,
2657
(
2014
).
21.
T.
Prokscha
,
R.
Scheuermann
,
U.
Hartmann
,
A.
Raselli
,
A.
Suter
,
A.
Amato
,
G. J.
Nieuwenhuys
,
A.
Dijksmann
,
F.
Gartner
,
U.
Greuter
,
S.
Mutter
,
N.
Schlumpf
, and
E.
Morenzoni
,
Physica B
404
,
1007
(
2009
).
22.
K.
Sedlak
,
R.
Scheuermann
,
T.
Shiroka
,
A.
Stoykov
,
A. R.
Raselli
, and
A.
Amato
,
Phys. Procedia
30
,
61
(
2012
).
23.
S.
Agostinelli
 et al.,
Nucl. Instrum. Methods Phys. Res., Sect. A
506
,
250
(
2003
).
24.
A.
Suter
and
B.
Wojek
,
Phys. Procedia
30
,
69
(
2012
).
25.
See https://midas.triumf.ca for MIDAS: Maximum Integrated Data Acquisition System, developed by S. Ritt (PSI) and members of the TRIUMF Data Acquisition Group.
26.
V. W.
Hughes
and
T.
Kinoshita
, in
Muon Physics I
, edited by
C. S.
Wu
and
V. W.
Hughes
(
Academic Press
,
New York
,
1977
), p.
11
.
27.
E.
Holzschuh
,
Phys. Rev. B
27
,
102
(
1983
).
28.

As the muon events are Poisson distributed, note that to maintain the pile-up events at the same level as in the case of a 10 μs time-window, an incoming-muon rate of 140 kHz is in principle allowed with a 2.5 μs time-window. In reality a reduction to about 100 kHz is necessary to maintain the veto-event rate in the pyramid below about 1 MHz, which represents the limit per channel for the TDC.

29.
J.
Kataoka
,
T.
Saito
,
M.
Yoshino
,
H.
Mizoma
,
T.
Nakamori
,
Y.
Yatsu
,
Y.
Ishikawa
,
Y.
Matsunaga
,
H.
Tajima
, and
M.
Kokubun
,
J. Instrum.
7
,
P06001
(
2012
).
30.
J.
Kodet
,
I.
Prochazka
,
J.
Blazej
,
X.
Sunb
, and
J.
Cavanaugh
,
Nucl. Instrum. Methods Phys. Res., Sect. A
695
,
309
(
2012
).
31.
Y.
Musienko
,
D.
Renker
,
S.
Reucroft
,
R.
Scheuermann
,
A.
Stoykov
, and
J.
Swain
,
Nucl. Instrum. Methods Phys. Res., Sect. A
581
,
433
(
2007
).
32.
R.
Abela
,
A.
Amato
,
C.
Baines
,
X.
Donath
,
R.
Erne
,
D. C.
George
,
D.
Herlach
,
G.
Irminger
,
I. D.
Reid
,
D.
Renker
,
G.
Solt
,
D.
Suhi
,
M.
Werner
, and
U.
Zimmermann
,
Hyperfine Interact.
120/121
,
575
(
1999
).
33.
K.
Deiters
,
P.
Kaufmann
,
Y.
Lee
,
T.
Prokscha
,
T.
Rauber
,
D.
Reggiani
,
R.
Scheuermann
,
K.
Sedlak
, and
V.
Vrankovic
, in
Proceedings of IPAC2012, New Orleans, LA, USA, 20-25 May (IPAC, 2012)
, p.
1236
.
34.
V.
Vrankovic
,
A. L.
Gabard
,
I.
Meier
,
R.
Stutz
,
R.
Deckardt
,
S.
Sanfilippo
,
R.
Scheuermann
,
K.
Sedlak
,
D.
Reggiani
,
K.
Deiters
,
T.
Rauber
, and
P.
Kaufmann
,
IEEE Trans. Appl. Supercond.
22
,
4101204
(
2012
).
You do not currently have access to this content.