We developed a microcantilever array biosensor instrument based on optical readout from a microcantilever array in fluid environment. The microcantilever signals were read out sequentially by laser beams emitted from eight optical fibers. The optical fibers were coupled to lasers, while the other ends of the fibers were embedded in eight V-grooves with 250 μm pitch microfabricated from a Si wafer. Aspherical lens was used to keep the distance between lasers. A programmable logic controller was used to make the system work stably. To make sure that the output of lasers was stable, a temperature controller was set up for each laser. When the deflection signal was collected, lasers used here were set to be on for at least 400 ms in each scanning cycle to get high signal-to-noise ratio deflection curves. A test was performed by changing the temperature of the liquid cell holding a microcantilever array to verify the consistent response of the instrument to the cantilever deflections. The stability and conformance of the instrument were demonstrated by quantitative detection of mercury ions in aqueous solution and comparison detection of clenbuterol by setting test and reference cantilevers. This microcantilever array detection instrument can be applied to highly sensitive detection of chemical and biological molecules in fluid environment.

1.
G.
Meyer
and
N. M.
Amer
,
Appl. Phys. Lett.
53
,
1045
(
1988
).
2.
D. R.
Baselt
,
B.
Fruhberger
,
E.
Klaassen
,
S.
Cemalovic
,
C. L.
Britton
, Jr.
,
S. V.
Patel
,
T. E.
Mlsna
,
D.
McCorkle
, and
B.
Warmack
,
Sens. Actuators, B
88
,
120
(
2003
).
3.
J. H.
Lee
,
K. S.
Hwang
,
D. S.
Yoon
,
J. Y.
Kang
,
S. K.
Kim
, and
T. S.
Kim
,
Adv. Mater.
23
,
2920
(
2011
).
4.
Y.
Jin
,
D.
Lee
,
S.
Lee
,
W.
Moon
, and
S.
Jeon
,
Anal. Chem.
83
,
7194
(
2011
).
5.
A.
Boisen
,
J.
Thaysen
,
H.
Jensenius
, and
O.
Hansen
,
Ultramicroscopy
82
,
11
(
2000
).
6.
R.
Mukhopadhyay
,
M.
Lorentzen
,
J.
Kjems
, and
F.
Besenbacher
,
Langmuir
21
,
8400
(
2005
).
7.
L. M.
Lechuga
,
J.
Tamayo
,
M.
Álvarez
,
L. G.
Carrascosa
,
A.
Yufera
,
R.
Doldán
,
E.
Peralías
,
A.
Rueda
,
J. A.
Plaza
,
K.
Zinoviev
,
C.
Domínguez
,
A.
Zaballos
,
M.
Moreno
,
C.
Martínez-A
,
D.
Wenn
,
N.
Harris
,
C.
Bringer
,
V.
Bardinal
,
T.
Camps
,
C.
Vergnenègre
,
C.
Fontaine
,
V.
Díaz
, and
A.
Bernad
,
Sens. Actuators, B
118
,
2
(
2006
).
8.
J. W.
Noh
,
R.
Anderson
,
S.
Kim
,
J.
Cardenas
, and
G. P.
Nordin
,
Opt. Express
16
,
12114
(
2008
).
9.
R.
McKendry
,
J.
Zhang
,
Y.
Arntz
,
T.
Strunz
,
M.
Hegner
,
H. P.
Lang
,
M. K.
Baller
,
U.
Certa
,
E.
Meyer
,
H. J.
Güntherodt
, and
C.
Gerber
,
Proc. Natl. Acad. Sci. U. S. A.
99
,
9783
(
2002
).
10.
G.
Oliviero
,
P.
Bergese
,
G.
Canavese
,
M.
Chiari
,
P.
Colombi
,
M.
Cretich
,
F.
Damin
,
S.
Fiorilli
,
S. L.
Marasso
,
C.
Ricciardi
,
P.
Rivolo
, and
L. E.
Depero
,
Anal. Chim. Acta
630
,
161
(
2008
).
11.
G.
Wu
,
R. H.
Datar
,
K. M.
Hansen
,
T.
Thundat
,
R. J.
Cote
, and
A.
Majumdar
,
Nat. Biotechnol.
19
,
856
(
2001
).
12.
D.
Lee
,
D.
Kwon
,
W.
Ko
,
J.
Joo
,
H.
Seo
,
S.
Suk Lee
, and
S.
Jeon
,
Chem. Commun.
48
,
7182
(
2012
).
13.
C.
Ricciardi
,
R.
Castagna
,
I.
Ferrante
,
F.
Frascella
,
S. L.
Marasso
,
A.
Ricci
,
G.
Canavese
,
A.
Lore
,
A.
Prelle
,
M. L.
Gullino
, and
D.
Spadaro
,
Biosens. Bioelectron.
40
,
233
(
2013
).
14.
X.
Zhou
,
S.
Wu
,
H.
Liu
,
X.
Wu
, and
Q.
Zhang
,
Sens. Actuators, B
226
,
24
(
2016
).
15.
H.
Zhao
,
C.
Xue
,
T.
Nan
,
G.
Tan
,
Z.
Li
,
Q. X.
Li
,
Q.
Zhang
, and
B.
Wang
,
Anal. Chim. Acta
676
,
81
(
2010
).
16.
H.-F.
Ji
and
T.
Thundat
,
Biosens. Bioelectron.
17
,
337
(
2002
).
17.
Y.
Xu
,
B.
Zhang
,
S.
Wu
, and
Y.
Xia
,
Anal. Chim. Acta
649
,
117
(
2009
).
18.
N.
Maloney
,
G.
Lukacs
,
S. L.
Ball
, and
M.
Hegner
,
Rev. Sci. Instrum.
85
,
015003
(
2014
).
19.
H.
Hou
,
X.
Bai
,
C.
Xing
,
N.
Gu
,
B.
Zhang
, and
J.
Tang
,
Anal. Chem.
85
,
2010
(
2013
).
20.
L.
Huang
,
Y.
Pheanpanitporn
,
Y.
Yen
,
K.
Chang
,
L.
Lin
, and
D.
Lai
,
Biosens. Bioelectron.
59
,
233
(
2014
).
21.
E.
Biavardi
,
S.
Federici
,
C.
Tudisco
,
D.
Menozzi
,
C.
Massera
,
A.
Sottini
,
G. G.
Condorilli
,
P.
Bergese
, and
E.
Dalcanale
,
Angew. Chem., Int. Ed.
53
,
9183
(
2014
).
22.
S.
Wu
,
X.
Liu
,
X.
Zhou
,
X. M.
Liang
,
D.
Gao
,
H.
Liu
,
G.
Zhao
,
Q.
Zhang
, and
X.
Wu
,
Biosens. Bioelectron.
77
,
164
(
2016
).
23.
F. M.
Battiston
,
J.-P.
Ramseyer
,
H. P.
Lang
,
M. K.
Baller
,
C.
Gerber
,
J. K.
Gimzewski
,
E.
Meyer
, and
H.-J.
Güntherodt
,
Sens. Actuators, B
77
,
122
(
2001
).
24.
N. F.
Martínez
,
P. M.
Kosaka
,
J.
Tamayo
,
J.
Ramírez
,
O.
Ahumada
,
J.
Mertens
,
T. D.
Hien
,
C. V.
Rijn
, and
M.
Calleja
,
Rev. Sci. Instrum.
81
,
125109
(
2010
).
25.
P.
Sathishkumar
,
P.
Punyabrahma
,
R.
Sri Muthu Mrinalini
, and
G. R.
Jayanth
,
Rev. Sci. Instrum.
86
,
096106
(
2015
).
26.
H. P.
Lang
,
R.
Berger
,
C.
Andreoli
,
J.
Brugger
,
M.
Despont
,
P.
Vettiger
,
Ch.
Gerber
, and
J. K.
Gimzewski
,
Appl. Phys. Lett.
72
,
19
(
1998
).
27.
J. R.
Barnes
,
R. J.
Stephenson
,
C. N.
Woodburn
,
S. J.
O’Shea
,
M. E.
Welland
 et al,
Rev. Sci. Instrum.
65
,
3793
(
1994
).
28.
See http://www.who.int/ipcs/assessment/public_health/mercury/en/ for information about health effects due to exposure to mercury.
29.
X.
Xu
,
T. G.
Thundat
,
G. M.
Brown
, and
H.-F.
Ji
,
Anal. Chem.
74
,
3611
(
2002
).
30.
X. N.
Wang
and
G. P.
Zhang
, “
Illegal use of Clenbuterol hydrochloride in China and its food safety analysis
,”
Chin. J. Anim. Sci.
40
,
52
(
2004
).
31.
R.
van den Hurk
and
S.
Evoy
,
Sens. Actuators, B
176
,
960
(
2013
).
32.
G.
Oliviero
,
M.
Chiari
,
E.
De Lorenzi
,
R.
Colombo
,
M.
Cretich
,
F.
Damin
,
S.
Federici
,
L. E.
Depero
, and
P.
Bergese
,
Sens. Actuators, B
176
,
1026
(
2013
).
33.
W.
Tan
,
Y.
Huang
,
T.
Nan
,
C.
Xue
,
Z.
Li
,
Q.
Zhang
, and
B.
Wang
,
Anal. Chem.
82
,
615
(
2010
).
34.
A.
Bietsch
,
J.
Zhang
,
M.
Hegner
,
H. P.
Lang
, and
C.
Gerber
,
Nanotechnology
15
,
873
(
2004
).
You do not currently have access to this content.