In this paper, a hybrid control system is developed by integrating the closed-loop force feedback and input shaping method to overcome the problem of the hysteresis and dynamic behavior in piezo-based scanning systems and increase the scanning speed of tunable external cavity diode lasers. The flexible hinge and piezoelectric actuators are analyzed, and a dynamic model of the scanning systems is established. A force sensor and an integral controller are utilized in integral force feedback (IFF) to directly augment the damping of the piezoelectric scanning systems. Hysteresis has been effectively eliminated, but the mechanical resonance is still evident. Noticeable residual vibration occurred after the inflection points and then gradually disappeared. For the further control of mechanical resonance, based on the theory of minimum-acceleration trajectory planning, the time-domain input shaping method was developed. The turning sections of a scanning trajectory are replaced by smooth curves, while the linear sections are retained. The IFF method is combined with the input shaping method to control the non-linearity and mechanical resonance in high-speed piezo-based scanning systems. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

1.
H.
Huang
,
H.
Zhao
,
Z.
Yang
,
Z.
Fan
,
S.
Wan
,
C.
Shi
, and
Z.
Ma
,
Sensors
12
,
9697
(
2012
).
2.
A. J.
Fleming
and
K. K.
Leang
,
IFAC Proceedings Volumes
43
,
117
(
2010
).
3.
I. D.
Mayergoyz
,
Mathematical Models of Hysteresis and Their Applications
(
Elsevier
,
2003
).
4.
S.
Devasia
,
E.
Eleftheriou
, and
S. O. R.
Moheimani
,
IEEE Trans. Control Syst. Technol.
15
,
802
(
2007
).
5.
G.
Song
,
J.
Zhao
,
X.
Zhou
, and
J.
De Abreu-Garcia
,
IEEE/ASME Trans. Mechatronics
10
,
198
(
2005
).
6.
Q.
Wang
and
C. Y.
Su
,
Automatica
42
,
859
(
2006
).
7.
R. C.
Barrett
and
C. F.
Quate
,
Rev. Sci. Instrum.
62
,
1393
(
1991
).
8.
A. J.
Fleming
IEEE/ASME Trans. Mechatronics
15
,
993
(
2010
).
9.
Y. R.
Teo
and
A. J.
Fleming
,
J. Sound Vib.
356
,
20
(
2015
).
10.
K. K.
Tan
,
H. L.
Tong
, and
H. X.
Zhou
,
IEEE/ASME Trans. Mechatronics
6
,
428
(
2002
).
11.
Q.
Xu
and
Y.
Li
,
J. Dyn. Syst., Meas., Control
132
,
041011
(
2010
).
12.
O.
Guillon
,
F.
Thiébaud
,
P.
Delobelle
, and
D.
Perreux
,
J. Eur. Ceram. Soc.
24
,
2547
(
2004
).
13.
H. J. M. T. A.
Adriaens
,
W. L.
De Koning
, and
R.
Banning
,
IEEE/ASME Trans. Mechatronics
5
,
331
(
2001
).
14.
B.
Bhikkaji
, in
Proceedings of Mechatronic Systems 439 (2006)
.
15.
C. Y.
Su
,
Q.
Wang
,
X.
Chen
, and
S.
Rakheja
,
IEEE Trans. Autom. Control
50
,
2069
(
2005
).
16.
L.
Juhász
,
J.
Maas
, and
B.
Borovac
,
Mechatronics
21
,
329
(
2011
).
17.
F. J.
Goforth
,
Q.
Zheng
, and
Z.
Gao
,
ISA Trans.
51
,
477
(
2012
).
18.
J. L.
Fanson
and
T. K.
Caughey
,
AIAA J.
28
,
717
(
2012
).
19.
A.
Sebastian
and
S. M.
Salapaka
,
IEEE Trans. Control Syst. Technol.
13
,
868
(
2005
).
20.
G.
Gu
and
L.
Zhu
,
Rev. Sci. Instrum.
81
,
085104
(
2010
).
21.
Z.
Guo
,
Y.
Tian
,
X.
Liu
,
B.
Shirinzadeh
,
F.
Wang
, and
D.
Zhang
,
Sens. Actuators, A
230
,
52
(
2015
).
22.
A. J.
Fleming
and
A. G.
Wills
,
IEEE Trans. Control Syst. Technol.
17
,
552
(
2009
).
23.
N.
Singer
and
W.
Seering
J. Dyn. Syst., Meas., Control
112
,
76
(
1988
).
24.
M. J.
Rost
,
L.
Crama
,
P.
Schakel
,
E.
Van Tol
,
G. B. E. M.
Van Velzen-Williams
,
C. F.
Overgauw
,
H.
Ter Horst
,
H.
Dekker
,
B.
Okhuijsen
, and
M.
Seynen
,
Rev. Sci. Instrum.
76
,
053710
(
2005
).
25.
Y. S.
Wang
,
L.
Sun
,
L.
Zhou
, and
J. T.
Liu
,
Zidonghua Xuebao
40
,
1328
(
2014
).
26.
G.
Schitter
,
P. J.
Thurner
, and
P. K.
Hansma
,
Mechatronics
18
,
282
(
2008
).
27.
A.
Preumont
,
Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems
(
Springer
,
The Netherlands
,
2006
).
You do not currently have access to this content.