We present the design, construction, and characterization of a multichannel, low-drift, low-noise dc voltage source specially designed for biasing the electrodes of segmented linear Paul traps. The system produces 20 output voltage pairs having a common-mode range of 0 to +120 V with 3.7 mV/LSB (least significant bit) resolution and differential ranges of ±5 V with 150 μV/LSB or ±16 V with 610 μV/LSB resolution. All common-mode and differential voltages are independently controllable, and all pairs share the same ground reference. The measured drift of the voltages after warm-up is lower than 1 LSB peak-to-peak on the time scale of 2 h. The noise of an output voltage measured with respect to ground is <10 μVRMS within 10 Hz–100 kHz, with spectral density lower than 3 nV Hz−1/2 above 50 kHz. The performance of the system is limited by the external commercial multichannel DAC unit NI 9264, and in principle, it is possible to achieve higher stability and lower noise with the same voltage ranges. The system has a compact, modular, and scalable architecture, having all parts except for the DAC chassis housed within a single 19″ 3HE rack.

1.
D. J.
Wineland
,
C.
Monroe
,
W. M.
Itano
,
D.
Leibfried
,
B. E.
King
, and
D. M.
Meekhof
, “
Experimental issues in coherent quantum-state manipulation of trapped atomic ions
,”
J. Res. Natl. Inst. Stand. Technol.
103
(
3
),
259
328
(
1998
).
2.
A.
Ludlow
,
M.
Boyd
,
J.
Ye
,
E.
Peik
, and
P. O.
Schmidt
, “
Optical atomic clocks
,”
Rev. Mod. Phys.
87
(
2
),
637
701
(
2015
).
3.
N.
Huntemann
,
B.
Lipphardt
,
C.
Tamm
,
V.
Gerginov
,
S.
Weyers
, and
E.
Peik
, “
Improved limit on a temporal variation of mp/me from comparisons of Yb+ and Cs atomic clocks
,”
Phys. Rev. Lett.
113
(
21
),
210802-1
210802-5
(
2014
).
4.
R. M.
Godun
,
P. B. R.
Nisbet-Jones
,
J. M.
Jones
,
S. A.
King
,
L. A. M.
Johnson
,
H. S.
Margolis
,
K.
Szymaniec
,
S. N.
Lea
,
K.
Bongs
, and
P.
Gill
, “
Frequency ratio of two optical clock transitions in 171Yb+ and constraints on the time variation of fundamental constants
,”
Phys. Rev. Lett.
113
(
21
),
210801-1
210801-5
(
2014
).
5.
H.
Häffner
,
C. F.
Roos
, and
R.
Blatt
, “
Quantum computing with trapped ions
,”
Phys. Rep.
469
(
4
),
155
203
(
2008
).
6.
R.
Blatt
and
C. F.
Roos
, “
Quantum simulations with trapped ions
,”
Nat. Phys.
8
(
4
),
277
284
(
2012
).
7.
W.
Paul
, “
Electromagnetic traps for charged and neutral particles
,”
Rev. Mod. Phys.
62
(
3
),
531
540
(
1990
).
8.
P. K.
Ghosh
,
Ion Traps
, 1st ed. (
Clarendon Press
,
Oxford, New York
,
1996
).
9.
M.
Brownnutt
,
M.
Kumph
,
P.
Rabl
, and
R.
Blatt
, “
Ion-trap measurements of electric-field noise near surfaces
,”
Rev. Mod. Phys.
87
(
4
),
1419
1482
(
2015
).
10.
K.
Pyka
,
N.
Herschbach
,
J.
Keller
, and
T. E.
Mehlstäubler
, “
A high-precision segmented Paul trap with minimized micromotion for an optical multi-ion clock
,”
Appl. Phys. B
114
(
1
),
231
241
(
2014
).
11.
P. O.
Schmidt
,
T.
Rosenband
,
C.
Langer
,
W. M.
Itano
,
J. C.
Bergquist
, and
D. J.
Wineland
, “
Spectroscopy using quantum logic
,”
Science
309
(
5735
),
749
752
(
2005
).
12.
Y.
Wan
,
F.
Gebert
,
J. B.
Wübbena
,
N.
Scharnhorst
,
S.
Amairi
,
I. D.
Leroux
,
B.
Hemmerling
,
N.
Lörch
,
K.
Hammerer
, and
P. O.
Schmidt
, “
Precision spectroscopy by photon-recoil signal amplification
,”
Nat. Commun.
5
,
3096
(
2014
).
13.
F.
Wolf
,
Y.
Wan
,
J. C.
Heip
,
F.
Gebert
,
C.
Shi
, and
P. O.
Schmidt
, “
Non-destructive state detection for quantum logic spectroscopy of molecular ions
,”
Nature
530
(
7591
),
457
460
(
2016
).
14.
D.
Kielpinski
,
C.
Monroe
, and
D. J.
Wineland
, “
Architecture for a large-scale ion-trap quantum computer
,”
Nature
417
(
6890
),
709
711
(
2002
).
15.
M. T.
Baig
,
M.
Johanning
,
A.
Wiese
,
S.
Heidbring
,
M.
Ziolkowski
, and
C.
Wunderlich
, “
A scalable, fast, and multichannel arbitrary waveform generator
,”
Rev. Sci. Instrum.
84
,
124701
(
2013
).
16.
D. J.
Berkeland
,
J. D.
Miller
,
J. C.
Bergquist
,
W. M.
Itano
, and
D. J.
Wineland
, “
Minimization of ion micromotion in a Paul trap
,”
J. Appl. Phys.
83
(
10
),
5025
5033
(
1998
).
17.
J.
Keller
,
H. L.
Partner
,
T.
Burgermeister
, and
T. E.
Mehlstäubler
, “
Precise determination of micromotion for trapped-ion optical clocks
,”
J. Appl. Phys.
118
(
10
) (
2015
).
18.
C. K.
Boggs
,
A. D.
Doak
, and
F. L.
Walls
, “
Measurement of voltage noise in chemical batteries
,” in
Proceedings of the 1995 IEEE International Frequency Control Symposium
,
1995
.
19.
D. B.
Pinegar
,
K.
Blaum
,
T. P.
Biesiadzinski
,
S. L.
Zafonte
, and
R.
Van Dyck
, Jr.
, “
Stable voltage source for Penning trap experiments
,”
Rev. Sci. Instrum.
80
(
6
),
064701
(
2009
).
20.
P.
Horowitz
and
W.
Hill
,
The Art of Electronics
, 3rd ed. (
Cambridge University Press
,
2015
).
21.
A.
Wagner
,
S.
Sturm
,
B.
Schabinger
,
K.
Blaum
, and
W.
Quint
, “
A battery-based, low-noise voltage source
,”
Rev. Sci. Instrum.
81
(
6
) (
2010
).
22.
J.
Williams
, “
AN118. High voltage, low noise, DC/DC converters
,”
Linear Technol.
(
2008
).
23.
C.
Böhm
,
S.
Sturm
,
A.
Rischka
,
A.
Dörr
,
S.
Eliseev
,
M.
Goncharov
,
M.
Höcker
,
J.
Ketter
,
F.
Köhler
,
D.
Marschall
,
J.
Martin
,
D.
Obieglo
,
J.
Repp
,
C.
Roux
,
R. X.
Schüssler
,
M.
Steigleder
,
S.
Streubel
,
T.
Wagner
,
J.
Westermann
,
V.
Wieder
,
R.
Zirpel
,
J.
Melcher
, and
K.
Blaum
, “
An ultra-stable voltage source for precision Penning-trap experiments
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
828
,
125
131
(
2016
).
24.
M.
Lee
, “
AN82. Understanding and applying voltage references
,”
Linear Technol.
(
1999
).
25.
J.
Dostal
,
Operational Amplifiers
, 2nd ed. (
Butterworth-Heinemann
,
Stoneham, MA
,
1993
).
26.
NI 9264 ±10 V, Analog Output, 25 kS/s/ch, 16 Ch Module, National Instruments,
2014
.
27.
PA340CC - High voltage operational amplifier, APEX Microtechnology,
2013
.
28.
AD8675–36 V Precision, 2.8 nV/√Hz Rail-to-Rail Output Op Amp, Analog Devices,
2012
.
29.
F.
Seifert
, Resistor current noise measurements. LIGO-T0900200–v1,
2009
.
30.
LT6375 ±270V Common Mode Voltage Difference Amplifier, Linear Technology,
2016
.
31.
OPA820-Unity-Gain Stable, Low-Noise, Voltage-Feedback Operational Amplifier, Texas Instruments,
2008
.
32.
AD8479-Very High Common-Mode Voltage Precision Difference Amplifier, Analog Devices,
2016
.
You do not currently have access to this content.