Absorption spectroscopy on CO2 for the determination of gas temperature is reported. Direct absorption of a frequency comb laser through a gas cell at atmospheric conditions is analysed with a virtually imaged phased array spectrometer. Several measurement and analysis techniques are investigated to find the parameters most sensitive to changes in the temperature. Some of these show qualitative agreement with theoretical predictions where the trend is similar to the calculated values.

1.
M. J.
Thorpe
,
D.
Balslev-Clausen
,
M. S.
Kirchner
, and
J.
Ye
, “
Cavity-enhanced optical frequency comb spectroscopy: Application to human breath analysis
,”
Opt. Express
16
,
2387
2397
(
2008
).
2.
E.
van Mastrigt
,
A.
Reyes-Reyes
,
K.
Brand
,
N.
Bhattacharya
,
H. P.
Urbach
,
A. P.
Stubbs
,
J. C.
de Jongste
, and
M. W.
Pijnenburg
, “
Exhaled breath profiling using broadband quantum cascade laser-based spectroscopy in healthy children and children with asthma and cystic fibrosis
,”
J. Breath Res.
10
,
026003
(
2016
).
3.
M. R.
McCurdy
,
Y.
Bakhirkin
,
G.
Wysocki
,
R.
Lewicki
, and
F. K.
Tittel
, “
Recent advances of laser-spectroscopy-based techniques for applications in breath analysis
,”
J. Breath Res.
1
,
014001
(
2007
).
4.
G. B.
Rieker
,
F. R.
Giorgetta
,
W. C.
Swann
,
J.
Kofler
,
A. M.
Zolot
,
L. C.
Sinclair
,
E.
Baumann
,
C.
Cromer
,
G.
Petron
,
C.
Sweeney
,
P. P.
Tans
,
I.
Coddington
, and
N. R.
Newbury
, “
Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths
,”
Optica
1
,
290
298
(
2014
).
5.
P.
Werle
, “
A review of recent advances in semiconductor laser based gas monitors
,”
Spectrochim. Acta, Part A
54
,
197
236
(
1998
).
6.
T. W.
Hänsch
, “
Nobel lecture: Passion for precision
,”
Rev. Mod. Phys.
78
,
1297
1309
(
2006
).
7.
J. L.
Hall
, “
Nobel lecture: Defining and measuring optical frequencies
,”
Rev. Mod. Phys.
78
,
1279
1295
(
2006
).
8.
S. A.
Diddams
, “
The evolving optical frequency comb [Invited]
,”
J. Opt. Soc. Am. B
27
(
11
),
B51
B62
(
2010
).
9.
R.
Paschotta
,
A.
Schlatter
,
S. C.
Zeller
,
H. R.
Telle
, and
U.
Keller
, “
Optical phase noise and carrier-envelope offset noise of mode-locked lasers
,”
Appl. Phys. B
82
,
265
273
(
2006
).
10.
S. A.
Diddams
,
L.
Hollberg
, and
V.
Mbele
, “
Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb
,”
Nature
445
,
627
630
(
2007
).
11.
M. C.
Stowe
,
M. J.
Thorpe
,
A.
Pe’er
,
J.
Ye
,
J. E.
Stalnaker
,
V.
Gerginov
, and
S. A.
Diddams
, “
Direct frequency comb spectroscopy
,”
Adv. At., Mol., Opt. Phys.
55
,
1
60
(
2008
).
12.
D.
Felinto
and
J.
Ye
, “
Direct frequency comb spectroscopy
,” in
Latin America Optics and Photonics Conference, OSA Technical Digest (CD)
(
Optical Society of America
,
2010
), paper WG2.
13.
J.
Ye
, “
Absolute measurement of a long, arbitrary distance to less than an optical fringe
,”
Opt. Lett.
29
(
10
),
1153
1155
(
2004
).
14.
M.
Cui
,
M. G.
Zeitouny
,
N.
Bhattacharya
,
S. A.
van den Berg
,
H. P.
Urbach
, and
J. J. M.
Braat
, “
High-accuracy long-distance measurements in air with a frequency comb laser
,”
Opt. Lett.
34
(
13
),
1982
1984
(
2009
).
15.
M.
Cui
,
M. G.
Zeitouny
,
N.
Bhattacharya
,
S. A.
van den Berg
, and
H. P.
Urbach
, “
Long distance measurement with femtosecond pulses using a dispersive interferometer
,”
Opt. Express
19
,
6549
6562
(
2011
).
16.
J.
Lee
,
Y.-J.
Kim
,
K.
Lee
,
S.
Lee
, and
S.-W.
Kim
, “
Time-of-flight measurement with femtosecond light pulses
,”
Nat. Photonics
4
,
716
720
(
2010
).
17.
K.-N.
Joo
and
S.-W.
Kim
, “
Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser
,”
Opt. Express
14
,
5954
5960
(
2006
).
18.
K.
Minoshima
and
H.
Matsumoto
, “
High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser
,”
Appl. Opt.
39
,
5512
5517
(
2000
).
19.
T.
Hieta
and
M.
Merimaa
, “
Spectroscopic measurement of air temperature
,”
Int. J. Thermophys.
31
,
1710
1718
(
2010
).
20.
J.
Guillory
,
R.
Šmíd
,
J.
García-Márquez
,
D.
Truong
,
C.
Alexandre
, and
J.-P.
Wallerand
, “
High resolution kilometric range optical telemetry in air by radio frequency phase measurement
,”
Rev. Sci. Instrum.
87
,
075105
(
2016
).
21.
J.
Guillory
,
J.-P.
Wallerand
,
A. F.
Obaton
, and
C.
Alexandre
, “
Laser diodes based absolute distance meter
,” in Conference on Precision Electromagnetic Measurements (CPEM) (
IEEE
,
Rio de Janeiro
,
2014
), pp.
490
491
.
22.
I.
Coddington
,
W. C.
Swann
,
L.
Nenadovic
, and
N. R.
Newbury
, “
Rapid and precise absolute distance measurements at long range
,”
Nat. Photonics
3
,
351
356
(
2009
).
23.
S. A.
van den Berg
,
S. T.
Persijn
,
G. J. P.
Kok
,
M. G.
Zeitouny
, and
N.
Bhattacharya
, “
Many-wavelength interferometry with thousands of lasers for absolute distance measurement
,”
Phys. Rev. Lett.
108
,
183901
(
2012
).
24.
S. A.
van den Berg
,
S.
van Eldik
, and
N.
Bhattacharya
, “
Mode-resolved frequency comb interferometry for high-accuracy long distance measurement
,”
Sci. Rep.
5
,
14661
(
2015
).
25.
N. R.
Doloca
,
K.
Meiners-Hagen
,
M.
Wedde
,
F.
Pollinger
, and
A.
Abou-Zeid
, “
Absolute distance measurement system using a femtosecond laser as a modulator
,”
Meas. Sci. Technol.
21
,
115302
(
2010
).
26.
K.
Minoshima
,
K.
Arai
, and
H.
Inaba
, “
High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs
,”
Opt. Express
19
,
26095
26105
(
2011
).
27.
B.
Edlén
, “
The dispersion of standard air
,”
J. Opt. Soc. Am.
43
,
339
344
(
1953
).
28.
B.
Edlén
, “
The refractive index of air
,”
Metrologia
2
,
71
80
(
1965
).
29.
P. E.
Ciddor
, “
Refractive index of air: New equations for the visible and near infrared
,”
Appl. Opt.
35
,
1566
1573
(
1996
).
30.
G.
Bönsch
and
E.
Potulski
, “
Measurement of the refractive index of air and comparison with modified Edlén’s formulae
,”
Metrologia
35
,
133
139
(
1998
).
31.
R. B.
Stull
,
An Introduction to Boundary Layer Meteorology
(
Kluwer Academic Publishers
,
1988
).
32.
See http://hitran.iao.ru/ for HITRAN on the web (accessed Oct. 17 2016).
33.
T.
Hieta
,
M.
Merimaa
,
M.
Vainio
,
J.
Seppä
, and
A.
Lassila
, “
High-precision diode-laser-based temperature measurement for air refractive index compensation
,”
Appl. Opt.
50
,
5990
5998
(
2011
).
34.
T.
Tomberg
,
T.
Fordell
,
J.
Jokela
,
M.
Merimaa
, and
T.
Hieta
, “
Spectroscopic thermometry for long distance surveying
,”
Appl. Opt.
56
,
239
246
(
2017
).
35.
A.
Farooq
,
J.
Jeffries
, and
R.
Hanson
, “
CO2 concentration and temperature sensor for combustion gases using diode-laser absorption near 2.7 μm
,”
Appl. Phys. B
90
,
619
628
(
2008
).
36.
A.
Klose
,
G.
Ycas
,
F. C.
Cruz
,
D. L.
Maser
, and
S. A.
Diddams
, “
Rapid, broadband spectroscopic temperature measurement of CO2 using VIPA spectroscopy
,”
Appl. Phys. B
122
,
78
(
2016
).
37.
S.
Xiao
and
A.
Weiner
, “
2-D wavelength demultiplexer with potential for 1000 channels in the C-band
,”
Opt. Express
12
,
2895
2902
(
2004
).
38.
G.
Kowzan
,
K. F.
Lee
,
M.
Paradowska
,
M.
Borkowski
,
P.
Ablewski
,
S.
Wójtewicz
,
K.
Stec
,
D.
Lisak
,
M. E.
Fermann
,
R. S.
Trawiński
, and
P.
Masłowski
, “
Self-referenced, accurate and sensitive optical frequency comb spectroscopy with a virtually imaged phased array spectrometer
,”
Opt. Lett.
41
,
974
977
(
2016
).
39.
See http://originlab.com/ for Origin Pro 2015.
40.
L. C.
Andrews
and
R. L.
Phillips
,
Laser Beam Propagation through Random Media
(
SPIE Press
,
2005
).
41.
R. A.
Toth
,
R. H.
Hunt
, and
E. K.
Plyler
, “
Lines intensities of the CO2 Σ-Σ bands in the 1.43-1.65 μ region
,”
J. Mol. Spectrosc.
38
,
107
117
(
1971
).
42.
S.
Hanf
,
R.
Keiner
,
D.
Yan
,
J.
Popp
, and
T.
Frosch
, “
Fiber-enhanced Raman multigas spectroscopy: A versatile tool for environmental gas sensing and breath analysis
,”
Anal. Chem.
86
,
5278
5285
(
2014
).
43.
R.
Šmíd
,
A.
Hänsel
,
L.
Pravdová
,
J.
Sobota
,
O.
Číp
, and
N.
Bhattacharya
, “
Comb mode filtering silver mirror cavity for spectroscopic distance measurement
,”
Rev. Sci. Instrum.
87
,
093107
(
2016
).
You do not currently have access to this content.