Starting from three-dimensional volume data of a granular packing, as, e.g., obtained by X-ray Computed Tomography, we discuss methods to first detect the individual particles in the sample and then analyze their properties. This analysis includes the pair correlation function, the volume and shape of the Voronoi cells, and the number and type of contacts formed between individual particles. We mainly focus on packings of monodisperse spheres, but we will also comment on other monoschematic particles such as ellipsoids and tetrahedra. This paper is accompanied by a package of free software containing all programs (including source code) and an example three-dimensional dataset which allows the reader to reproduce and modify all examples given.

1.
W.
Zhang
,
K. E.
Thompson
,
A. H.
Reed
, and
L.
Beenken
, “
Relationship between packing structure and porosity in fixed beds of equilateral cylindrical particles
,”
Chem. Eng. Sci.
61
,
8060
8074
(
2006
).
2.
A. V.
Orpe
and
A.
Kudrolli
, “
Velocity correlations in dense granular flows observed with internal imaging
,”
Phys. Rev. Lett.
98
,
238001
(
2007
).
3.
M.
Jerkins
,
M.
Schröter
,
H. L.
Swinney
,
T. J.
Senden
,
M.
Saadatfar
, and
T.
Aste
, “
Onset of mechanical stability in random packings of frictional spheres
,”
Phys. Rev. Lett.
101
,
018301
(
2008
).
4.
K. W.
Desmond
and
E. R.
Weeks
, “
Random close packing of disks and spheres in confined geometries
,”
Phys. Rev. E
80
,
051305
(
2009
).
5.
J. H.
Lambert
,
Photometria, Sive de Mensura et Gradibus Luminis, Colorum et Umbrae
(
Eberhard Klett
,
Augsburg
,
1760
).
6.
Beer
, “
Bestimmung der absorption des rothen lichts in farbigen flüssigkeiten
,”
Ann. Phys.
162
,
78
88
(
1852
).
7.
R. L.
Michalowski
, “
Flow of granular material through a plane hopper
,”
Powder Technol.
39
,
29
40
(
1984
).
8.
G. W.
Baxter
,
R. P.
Behringer
,
T.
Fagert
, and
G. A.
Johnson
, “
Pattern formation in flowing sand
,”
Phys. Rev. Lett.
62
,
2825
2828
(
1989
).
9.
A.
Kabla
and
G.
Debrégeas
,
J.-M.
di Meglio
, and
T. J.
Senden
, “
X-ray observation of micro-failures in granular piles approaching an avalanche
,”
Europhys. Lett.
71
,
932
937
(
2005
).
10.
A. J.
Kabla
and
T. J.
Senden
, “
Dilatancy in slow granular flows
,”
Phys. Rev. Lett.
102
,
228301
(
2009
).
11.
J. R.
Royer
,
E. I.
Corwin
,
A.
Flior
,
M.-L.
Cordero
,
M. L.
Rivers
,
P. J.
Eng
, and
H. M.
Jaeger
, “
Formation of granular jets observed by high-speed X-ray radiography
,”
Nat. Phys.
1
,
164
167
(
2005
).
12.
R. D.
Maladen
,
Y.
Ding
,
C.
Li
, and
D. I.
Goldman
, “
Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard
,”
Science
325
,
314
318
(
2009
).
13.
Y.
Cao
,
X.
Zhang
,
B.
Kou
,
X.
Li
,
X.
Xiao
,
K.
Fezzaa
, and
Y.
Wang
, “
A dynamic synchrotron X-ray imaging study of effective temperature in a vibrated granular medium
,”
Soft Matter
10
,
5398
5404
(
2014
).
14.
T.
Homan
,
R.
Mudde
,
D.
Lohse
, and
D.
van der Meer
, “
High-speed X-ray imaging of a ball impacting on loose sand
,”
J. Fluid Mech.
777
,
690
706
(
2015
).
15.

180° for a parallel X-ray beam, as, e.g., delivered by a synchrotron. 360° if the beam expands from a point source, as in a normal X-ray tube.

16.
T. M.
Buzug
,
Computed Tomography—From Photon Statistics to Modern Cone-Beam CT
(
Springer
,
2008
).
17.

The term voxel is used in two ways: to refer to the cuboidal image element itself and as a unit of length equivalent to one edge of this cube.

18.
A. G.
Athanassiadis
,
P. J. L.
Rivière
,
E.
Sidky
,
C.
Pelizzari
,
X.
Pan
, and
H. M.
Jaeger
, “
X-ray tomography system to investigate granular materials during mechanical loading
,”
Rev. Sci. Instrum.
85
,
083708
(
2014
).
19.
G. T.
Seidler
,
G.
Martinez
,
L. H.
Seeley
,
K. H.
Kim
,
E. A.
Behne
,
S.
Zaranek
,
B. D.
Chapman
,
S. M.
Heald
, and
D. L.
Brewe
, “
Granule-by-granule reconstruction of a sandpile from x-ray microtomography data
,”
Phys. Rev. E
62
,
8175
8181
(
2000
).
20.
P.
Richard
,
P.
Philippe
,
F.
Barbe
,
S.
Bourlès
,
X.
Thibault
, and
D.
Bideau
, “
Analysis by x-ray microtomography of a granular packing undergoing compaction
,”
Phys. Rev. E
68
,
020301
(
2003
).
21.
T.
Aste
, “
Variations around disordered close packing
,”
J. Phys.: Condens. Matter
17
,
S2361
(
2005
).
22.
T.
Aste
,
M.
Saadatfar
, and
T. J.
Senden
, “
Geometrical structure of disordered sphere packings
,”
Phys. Rev. E
71
,
061302
(
2005
).
23.
T.
Aste
,
T. D.
Matteo
,
M.
Saadatfar
,
T. J.
Senden
,
M.
Schröter
, and
H. L.
Swinney
, “
An invariant distribution in static granular media
,”
Europhys. Lett.
79
,
24003
(
2007
).
24.
M.
Tsukahara
,
S.
Mitrovic
,
V.
Gajdosik
,
G.
Margaritondo
,
L.
Pournin
,
M.
Ramaioli
,
D.
Sage
,
Y.
Hwu
,
M.
Unser
, and
T. M.
Liebling
, “
Coupled tomography and distinct-element-method approach to exploring the granular media microstructure in a jamming hourglass
,”
Phys. Rev. E
77
,
061306
(
2008
).
25.
R.
Al-Raoush
and
A.
Papadopoulos
, “
Representative elementary volume analysis of porous media using X-ray computed tomography
,”
Powder Technol.
200
,
69
77
(
2010
).
26.
A.
Gillman
,
K.
Matouš
, and
S.
Atkinson
, “
Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography
,”
Phys. Rev. E
87
,
022208
(
2013
).
27.
C.
Xia
,
Y.
Cao
,
B.
Kou
,
J.
Li
,
Y.
Wang
,
X.
Xiao
, and
K.
Fezzaa
, “
Angularly anisotropic correlation in granular packings
,”
Phys. Rev. E
90
,
062201
(
2014
).
28.
K.
Heim
,
F.
Bernier
,
R.
Pelletier
, and
L. P.
Lefebvre
, “
High resolution pore size analysis in metallic powders by X-ray tomography
,”
Case Stud. Nondestr. Test. Eval.
6
,
45
52
(
2016
).
29.
V.
Baranau
,
S.-C.
Zhao
,
M.
Scheel
,
U.
Tallarek
, and
M.
Schröter
, “
Upper bound on the Edwards entropy in frictional monodisperse hard-sphere packings
,”
Soft Matter
12
,
3991
4006
(
2016
).
30.
M.
Scheel
,
R.
Seemann
,
M.
Brinkmann
,
M.
Di Michiel
,
A.
Sheppard
,
B.
Breidenbach
, and
S.
Herminghaus
, “
Morphological clues to wet granular pile stability
,”
Nat. Mater.
7
,
189
193
(
2008
).
31.
E.
Brown
,
A.
Nasto
,
A. G.
Athanassiadis
, and
H. M.
Jaeger
, “
Strain stiffening in random packings of entangled granular chains
,”
Phys. Rev. Lett.
108
,
108302
(
2012
).
32.
Y. X.
Cao
,
B.
Chakrabortty
,
G. C.
Barker
,
A.
Mehta
, and
Y. J.
Wang
, “
Bridges in three-dimensional granular packings: Experiments and simulations
,”
Europhys. Lett.
102
,
24004
(
2013
).
33.
G. W.
Delaney
,
T. D.
Matteo
, and
T.
Aste
, “
Combining tomographic imaging and DEM simulations to investigate the structure of experimental sphere packings
,”
Soft Matter
6
,
2992
3006
(
2010
).
34.
M.
Saadatfar
,
A. P.
Sheppard
,
T. J.
Senden
, and
A. J.
Kabla
, “
Mapping forces in a 3d elastic assembly of grains
,”
J. Mech. Phys. Solids
60
,
55
66
(
2012
).
35.
R.
Hurley
,
S.
Hall
,
J.
Andrade
, and
J.
Wright
, “
Quantifying interparticle forces and heterogeneity in 3d granular materials
,”
Phys. Rev. Lett.
117
,
098005
(
2016
).
36.
S.
Hall
,
M.
Bornert
,
J.
Desrues
,
Y.
Pannier
,
N.
Lenoir
,
G.
Viggiani
, and
P.
Bésuelle
, “
Discrete and continuum analysis of localised deformation in sand using X-ray μCT and volumetric digital image correlation
,”
Géotechnique
60
,
315
322
(
2010
).
37.
E.
Andò
,
S. A.
Hall
,
G.
Viggiani
,
J.
Desrues
, and
P.
Bésuelle
, “
Grain-scale experimental investigation of localised deformation in sand: A discrete particle tracking approach
,”
Acta Geotech.
7
,
1
13
(
2012
).
38.
E.
Andò
,
G.
Viggiani
,
S. A.
Hall
, and
J.
Desrues
, “
Experimental micro-mechanics of granular media studied by x-ray tomography: Recent results and challenges
,”
Géotech. Lett.
3
,
142
146
(
2013
).
39.
A.
Tordesillas
,
D. M.
Walker
,
E.
Andò
, and
G.
Viggiani
, “
Revisiting localized deformation in sand with complex systems
,”
Proc. R. Soc. A
469
,
20120606
(
2013
).
40.
R.
Alikarami
,
E.
Andò
,
M.
Gkiousas-Kapnisis
,
A.
Torabi
, and
G.
Viggiani
, “
Strain localisation and grain breakage in sand under shearing at high mean stress: Insights from in situ x-ray tomography
,”
Acta Geotech.
10
,
15
30
(
2015
).
41.
A.
Hemmerle
,
M.
Schröter
, and
L.
Goehring
, “
A cohesive granular material with tunable elasticity
,”
Sci. Rep.
6
,
35650
(
2016
).
42.
Y.
Fu
,
Y.
Xi
,
Y.
Cao
, and
Y.
Wang
, “
X-ray microtomography study of the compaction process of rods under tapping
,”
Phys. Rev. E
85
,
051311
(
2012
).
43.
T.
Börzsönyi
,
B.
Szabó
,
G.
Törös
,
S.
Wegner
,
J.
Török
,
E.
Somfai
,
T.
Bien
, and
R.
Stannarius
, “
Orientational order and alignment of elongated particles induced by shear
,”
Phys. Rev. Lett.
108
,
228302
(
2012
).
44.
T.
Börzsönyi
,
B.
Szabó
,
S.
Wegner
,
K.
Harth
,
J.
Török
,
E.
Somfai
,
T.
Bien
, and
R.
Stannarius
, “
Shear-induced alignment and dynamics of elongated granular particles
,”
Phys. Rev. E
86
,
051304
(
2012
).
45.
S.
Wegner
,
T.
Börzsönyi
,
T.
Bien
,
G.
Rose
, and
R.
Stannarius
, “
Alignment and dynamics of elongated cylinders under shear
,”
Soft Matter
8
,
10950
10958
(
2012
).
46.
V.
Yadav
,
J.-Y.
Chastaing
, and
A.
Kudrolli
, “
Effect of aspect ratio on the development of order in vibrated granular rods
,”
Phys. Rev. E
88
,
052203
(
2013
).
47.
S.
Wegner
,
R.
Stannarius
,
A.
Boese
,
G.
Rose
,
B.
Szabó
,
E.
Somfai
, and
T.
Börzsönyi
, “
Effects of grain shape on packing and dilatancy of sheared granular materials
,”
Soft Matter
10
,
5157
5167
(
2014
).
48.
G.
Wortel
,
T.
Börzsönyi
,
E.
Somfai
,
S.
Wegner
,
B.
Szabó
,
R.
Stannarius
, and
M. v.
Hecke
, “
Heaping, secondary flows and broken symmetry in flows of elongated granular particles
,”
Soft Matter
11
,
2570
2576
(
2015
).
49.
T.
Börzsönyi
,
E.
Somfai
,
B.
Szabó
,
S.
Wegner
,
P.
Mier
,
G.
Rose
, and
R.
Stannarius
, “
Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment
,”
New J. Phys.
18
,
093017
(
2016
).
50.
T.
Finger
,
M.
Schröter
, and
R.
Stannarius
, “
The mechanism of long-term coarsening of granular mixtures in rotating drums
,”
New J. Phys.
17
,
093023
(
2015
).
51.
A.
Schella
,
S.
Herminghaus
, and
M.
Schröter
, “
Influence of humidity on tribo-electric charging and segregation in shaken granular media
,”
Soft Matter
13
,
394
401
(
2017
).
52.
N.
Francois
,
M.
Saadatfar
,
R.
Cruikshank
, and
A.
Sheppard
, “
Geometrical frustration in amorphous and partially crystallized packings of spheres
,”
Phys. Rev. Lett.
111
,
148001
(
2013
).
53.
M.
Hanifpour
,
N.
Francois
,
S.
Vaez Allaei
,
T.
Senden
, and
M.
Saadatfar
, “
Mechanical characterization of partially crystallized sphere packings
,”
Phys. Rev. Lett.
113
,
148001
(
2014
).
54.
M.
Hanifpour
,
N.
Francois
,
V.
Robins
,
A.
Kingston
,
S. M.
Vaez Allaei
, and
M.
Saadatfar
, “
Structural and mechanical features of the order-disorder transition in experimental hard-sphere packings
,”
Phys. Rev. E
91
,
062202
(
2015
).
55.
J.
Li
,
Y.
Cao
,
C.
Xia
,
B.
Kou
,
X.
Xiao
,
K.
Fezzaa
, and
Y.
Wang
, “
Similarity of wet granular packing to gels
,”
Nat. Commun.
5
,
5014
(
2014
).
56.
C.
Xia
,
J.
Li
,
Y.
Cao
,
B.
Kou
,
X.
Xiao
,
K.
Fezzaa
,
T.
Xiao
, and
Y.
Wang
, “
The structural origin of the hard-sphere glass transition in granular packing
,”
Nat. Commun.
6
,
8409
(
2015
).
57.
B.
Zhao
,
J.
Wang
,
M. R.
Coop
,
G.
Viggiani
, and
M.
Jiang
, “
An investigation of single sand particle fracture using X-ray micro-tomography
,”
Géotechnique
65
,
625
641
(
2015
).
58.
See for the download of compiled programs, source code and example data set.
59.
R.
Stannarius
, “
Magnetic resonance imaging of granular materials
,”
Rev. Sci. Instrum.
88
,
051806
(
2017
).
60.
J. A.
Dijksman
,
F.
Rietz
,
K. A.
Lőrincz
,
M.
van Hecke
, and
W.
Losert
, “
Invited Article: Refractive index matched scanning of dense granular materials
,”
Rev. Sci. Instrum.
83
,
011301
(
2012
).
61.
R. B.
Joshua Dijksman
,
N.
Brodu
, and
R. P.
Behringer
, “
Refractive index matched scanning and detection of soft particles
,”
Rev. Sci. Instrum.
88
,
051807
(
2017
).
62.
I.
Vlahinić
,
E.
Andò
,
G.
Viggiani
, and
J. E.
Andrade
, “
Towards a more accurate characterization of granular media: Extracting quantitative descriptors from tomographic images
,”
Granular Matter
16
,
9
21
(
2014
).
63.
R.
Kawamoto
,
E.
Andò
,
G.
Viggiani
, and
J. E.
Andrade
, “
Level set discrete element method for three-dimensional computations with triaxial case study
,”
J. Mech. Phys. Solids
91
,
1
13
(
2016
).
64.
I.
Vlahinić
,
R.
Kawamoto
,
E.
Andò
,
G.
Viggiani
, and
J. E.
Andrade
, “
From computed tomography to mechanics of granular materials via level set bridge
,”
Acta Geotech.
12
,
1
11
(
2016
).
65.
F. M.
Schaller
,
M.
Neudecker
,
M.
Saadatfar
,
G.
Delaney
,
K.
Mecke
,
G. E.
Schröder-Turk
, and
M.
Schröter
, “
Tomographic analysis of jammed ellipsoid packings
,”
AIP Conf. Proc.
1542
,
377
380
(
2013
).
66.
F. M.
Schaller
,
M.
Neudecker
,
M.
Saadatfar
,
G. W.
Delaney
,
G. E.
Schröder-Turk
, and
M.
Schröter
, “
Local origin of global contact numbers in frictional ellipsoid packings
,”
Phys. Rev. Lett.
114
,
158001
(
2015
).
67.
F. M.
Schaller
,
S. C.
Kapfer
,
J. E.
Hilton
,
P. W.
Cleary
,
K.
Mecke
,
C. D.
Michele
,
T.
Schilling
,
M.
Saadatfar
,
M.
Schröter
,
G. W.
Delaney
, and
G. E.
Schröder-Turk
, “
Non-universal Voronoi cell shapes in amorphous ellipsoid packs
,”
Europhys. Lett.
111
,
24002
(
2015
).
68.
See https://github.com/spatialfruitsalad/volume2position for the online code repository of the program volume2position,
2017
.
69.
S.-C.
Zhao
, “
Length scales in granular matter
,” Ph.D. thesis,
Georg-August-Universität Göttingen
,
2013
.
70.
C.
Kleinschmidt
, “
Analytical considerations of beam hardening in medical accelerator photon spectra
,”
Med. Phys.
26
,
1995
1999
(
1999
).
71.
C.
Tomasi
and
R.
Manduchi
, “
Bilateral filtering for gray and color images
,” in
1998. Sixth International Conference on Computer Vision
(
IEEE
,
1998
), pp.
839
846
.
72.
N.
Otsu
, “
A threshold selection method from gray-level histograms
,”
Automatica
11
,
23
27
(
1975
).
73.
M.
Neudecker
,
S.
Ulrich
,
S.
Herminghaus
, and
M.
Schröter
, “
Jamming of frictional tetrahedra
,”
Phys. Rev. Lett.
111
,
028001
(
2013
).
74.
M.
Neudecker
, “
Geometric structure and mechanical stability of disordered tetrahedra packings
,” Ph.D. thesis,
Georg-August-Universität Göttingen
,
2013
.
75.
T.
Aste
,
M.
Saadatfar
,
A.
Sakellariou
, and
T. J.
Senden
, “
Investigating the geometrical structure of disordered sphere packings
,”
Phys. A
339
,
16
23
(
2004
).
76.
C.
Xia
,
K.
Zhu
,
Y.
Cao
,
H.
Sun
,
B.
Kou
, and
Y.
Wang
, “
X-ray tomography study of the random packing structure of ellipsoids
,”
Soft Matter
10
,
990
996
(
2014
).
77.
L.-N.
Zou
,
X.
Cheng
,
M. L.
Rivers
,
H. M.
Jaeger
, and
S. R.
Nagel
, “
The packing of granular polymer chains
,”
Science
326
,
408
410
(
2009
).
78.
M.
van Hecke
, “
Jamming of soft particles: Geometry, mechanics, scaling and isostaticity
,”
J. Phys.: Condens. Matter
22
,
033101
(
2010
).
79.
A. J.
Liu
and
S. R.
Nagel
, “
The jamming transition and the marginally jammed solid
,”
Ann. Rev. Cond. Matt. Phys.
1
,
347
369
(
2010
).
80.

In a system of soft particles, this broadening might also be due to deformations of the particles.61 

81.
J.
Murison
,
R.
Moosavi
,
M.
Schulz
,
B.
Schillinger
, and
M.
Schröter
, “
Neutron tomography as a tool to study Immiscible fluids in porous media without chemical dopants
,”
Energy Fuels
29
,
6271
(
2015
).
82.
See https://bitbucket.org/Laguna_999/raps for the online code repository for the program raps,
2017
.
83.
J. D.
Bernal
and
J.
Mason
, “
Co-ordination of randomly packed spheres
,”
Nature
188
,
910
911
(
1960
).
84.
D.
Pinson
,
R. P.
Zou
,
A. B.
Yu
,
P.
Zulli
, and
M. J.
McCarthy
, “
Coordination number of binary mixtures of spheres
,”
J. Phys. D: Appl. Phys.
31
,
457
(
1998
).
85.
J.
Blouwolff
and
S.
Fraden
, “
The coordination number of granular cylinders
,”
Europhys. Lett.
76
,
1095
1101
(
2006
).
86.
X.-D.
Zhang
,
C.-J.
Xia
,
X.-H.
Xiao
, and
Y.-J.
Wang
, “
Fast synchrotron x-ray tomography study of the packing structure of rods with different aspect ratios
,”
Chin. Phys. B
23
,
044501
(
2014
).
87.
H.
Makse
, “
Software and data: Research on hard sphere packings
,” http://www-levich.engr.ccny.cuny.edu/webpage/hmakse/software-and-data/
2013
.
88.
See http://www.gnuplot.info for the website of the fitting program gnuplot,
2017
.
89.
N. N.
Thyagu
,
M.
Neudecker
, and
M.
Schröter
, “
Local analysis of the history dependence in tetrahedra packings
,” e-print arXiv:1501.04472.
90.
F.
Radjai
,
M.
Nakagawa
, and
S.
Luding
, “
Force and fabric states in granular media
,”
AIP Conf. Proc.
1145
,
35
42
(
2009
).
91.
R.
Blumenfeld
and
S. F.
Edwards
, “
Granular entropy: Explicit calculations for planar assemblies
,”
Phys. Rev. Lett.
90
,
114303
(
2003
).
92.
C.
Song
,
P.
Wang
, and
H. A.
Makse
, “
A phase diagram for jammed matter
,”
Nature
453
,
629
632
(
2008
).
93.
J. G.
Puckett
,
F.
Lechenault
, and
K. E.
Daniels
, “
Local origins of volume fraction fluctuations in dense granular materials
,”
Phys. Rev. E
83
,
041301
(
2011
).
94.
A.
Baule
,
R.
Mari
,
L.
Bo
,
L.
Portal
, and
H. A.
Makse
, “
Mean-field theory of random close packings of axisymmetric particles
,”
Nat. Commun.
4
,
2194
(
2013
).
95.
A.
Baule
and
H. A.
Makse
, “
Fundamental challenges in packing problems: From spherical to non-spherical particles
,”
Soft Matter
10
,
4423
4429
(
2014
).
96.
M.
Pica Ciamarra
, “
Comment on granular entropy: Explicit calculations for planar assemblies
,”
Phys. Rev. Lett.
99
,
089401
(
2007
).
97.
F. W.
Starr
,
S.
Sastry
,
J. F.
Douglas
, and
S. C.
Glotzer
, “
What do we learn from the local geometry of glass-forming liquids?
,”
Phys. Rev. Lett.
89
,
125501
(
2002
).
98.
V. S.
Kumar
and
V.
Kumaran
, “
Voronoi cell volume distribution and configurational entropy of hard-spheres
,”
J. Chem. Phys.
123
,
114501
(
2005
).
99.
T.
Aste
and
T.
Di Matteo
, “
Emergence of Gamma distributions in granular materials and packing models
,”
Phys. Rev. E
77
,
021309
(
2008
).
100.
R. F.
Shepherd
,
J. C.
Conrad
,
T.
Sabuwala
,
G. G.
Gioia
, and
J. A.
Lewis
, “
Structural evolution of cuboidal granular media
,”
Soft Matter
8
,
4795
4801
(
2012
).
101.
V.
Luchnikov
,
N.
Medvedev
,
L.
Oger
, and
J.-P.
Troadec
, “
Voronoi-delaunay analysis of voids in systems of nonspherical particles
,”
Phys. Rev. E
59
,
7205
(
1999
).
102.
E.
Preteux
, “
Watershed and skeleton by influence zones: A distance-based approach
,”
J. Math. Imaging Vision
1
,
239
255
(
1992
).
103.
See http://theorie1.physik.fau.de/research/pomelo/index.html for the website of the program pomelo,
2017
.
104.
G. E.
Schröder-Turk
,
W.
Mickel
,
M.
Schröter
,
G. W.
Delaney
,
M.
Saadatfar
,
T. J.
Senden
,
K.
Mecke
, and
T.
Aste
, “
Disordered spherical bead packs are anisotropic
,”
Europhys. Lett.
90
,
34001–3400
6
(
2010
).
105.
G. E.
Schröder-Turk
,
W.
Mickel
,
S. C.
Kapfer
,
F. M.
Schaller
,
B.
Breidenbach
,
D.
Hug
, and
K.
Mecke
, “
Minkowski tensors of anisotropic spatial structure
,”
New J. Phys.
15
,
083028
(
2013
).
106.
S.
Alesker
, “
Description of continuous isometry covariant valuations on convex sets
,”
Geom. Dedicata
74
,
241
248
(
1999
).
107.
S. C.
Kapfer
,
W.
Mickel
,
F. M.
Schaller
,
M.
Spanner
,
C.
Goll
,
T.
Nogawa
,
N.
Ito
,
K.
Mecke
, and
G. E.
Schröder-Turk
, “
Local anisotropy of fluids using minkowski tensors
,”
J. Stat. Mech.: Theory Exp.
2010
,
P11010
.
108.
S. C.
Kapfer
,
W.
Mickel
,
K.
Mecke
, and
G. E.
Schröder-Turk
, “
Jammed spheres: Minkowski tensors reveal onset of local crystallinity
,”
Phys. Rev. E
85
,
030301
(
2012
).
109.
W.
Mickel
,
S.
Münster
,
L. M.
Jawerth
,
D. A.
Vader
,
D. A.
Weitz
,
A. P.
Sheppard
,
K.
Mecke
,
B.
Fabry
, and
G. E.
Schröder-Turk
, “
Robust pore size analysis of filamentous networks from three-dimensional confocal microscopy
,”
Biophys. J.
95
,
6072
6080
(
2008
).
110.
G. E.
Schröder-Turk
,
S.
Kapfer
,
B.
Breidenbach
,
C.
Beisbart
, and
K.
Mecke
, “
Tensorial minkowski functionals and anisotropy measures for planar patterns
,”
J. Microsc.
238
,
57
74
(
2010
).
111.
A. G.
Athanassiadis
,
M. Z.
Miskin
,
P.
Kaplan
,
N.
Rodenberg
,
S. H.
Lee
,
J.
Merritt
,
E.
Brown
,
J.
Amend
,
H.
Lipson
, and
H. M.
Jaeger
, “
Particle shape effects on the stress response of granular packings
,”
Soft Matter
10
,
48
59
(
2013
).
112.
C.
Scholz
,
S.
D’Silva
, and
T.
Pöschel
, “
Ratcheting and tumbling motion of vibrots
,”
New J. Phys.
18
,
123001
(
2016
).
113.
D.
Wildenschild
and
A. P.
Sheppard
, “
X-ray imaging and analysis techniques for quantifying pore-scale structure and processes in subsurface porous medium systems
,”
Adv. Water Resour.
51
,
217
246
(
2013
).
114.
L.
Leu
,
S.
Berg
,
F.
Enzmann
,
R. T.
Armstrong
, and
M.
Kersten
, “
Fast x-ray micro-tomography of multiphase flow in berea sandstone: A sensitivity study on image processing
,”
Transp. Porous Media
105
,
451
469
(
2014
).
115.
M.
Andrew
,
H.
Menke
,
M. J.
Blunt
, and
B.
Bijeljic
, “
The imaging of dynamic multiphase fluid flow using synchrotron-based x-ray microtomography at reservoir conditions
,”
Transp. Porous Media
110
,
1
24
(
2015
).
116.
See http://datadryad.org/ for the open data repository Dryad,
2017
.
117.
See https://zenodo.org/ for the open data repository zenodo,
2017
.
119.
See http://fiji.sc/ for the website of the image manipulation program fiji,
2017
.
120.
See http://www.theorie1.physik.uni-erlangen.de/research/karambola/ for the website of the program karambola,
2017
.
121.
See https://imagej.nih.gov/ij/ for the image manipulation program ImageJ,
2017
.
122.

To find out the amount of memory available to Fiji, check the settings in EditOptionsMemory and Threads.

123.
See http://math.lbl.gov/voro++/ for the website of the Voronoi library voro++,
2017
.
124.
C.
Rycroft
,
Voro++: A Three-Dimensional Voronoi Cell Library in C++
(
Lawrence Berkeley National Laboratory
,
2009
).
125.
J.
Hoshen
and
R.
Kopelman
, “
Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm
,”
Phys. Rev. B
14
,
3438
(
1976
).

Supplementary Material

You do not currently have access to this content.