Magnetic Resonance Imaging (MRI) has become one of the most important tools to screen humans in medicine; virtually every modern hospital is equipped with a Nuclear Magnetic Resonance (NMR) tomograph. The potential of NMR in 3D imaging tasks is by far greater, but there is only “a handful” of MRI studies of particulate matter. The method is expensive, time-consuming, and requires a deep understanding of pulse sequences, signal acquisition, and processing. We give a short introduction into the physical principles of this imaging technique, describe its advantages and limitations for the screening of granular matter, and present a number of examples of different application purposes, from the exploration of granular packing, via the detection of flow and particle diffusion, to real dynamic measurements. Probably, X-ray computed tomography is preferable in most applications, but fast imaging of single slices with modern MRI techniques is unmatched, and the additional opportunity to retrieve spatially resolved flow and diffusion profiles without particle tracking is a unique feature.

1.
I. I.
Rabi
,
J. R.
Zacharias
,
S.
Millman
, and
P.
Kusch
, “
A new method of measuring nuclear magnetic moment
,”
Phys. Rev.
53
,
318
(
1938
).
2.
E. M.
Purcell
,
H. C.
Torrey
, and
R. V.
Pound
, “
Resonance absorption by nuclear magnetic moments in a solid
,”
Phys. Rev.
69
,
37
(
1946
).
3.
F.
Bloch
,
W. W.
Hansen
, and
M.
Packard
, “
Nuclear induction
,”
Phys. Rev.
69
,
127
(
1946
);
F.
Bloch
,
W. W.
Hansen
, and
M.
Packard
, “
The nuclear induction experiment
,”
Phys. Rev.
70
,
474
485
(
1946
)
3.
F.
Bloch
, “
Nuclear induction
,”
Phys. Rev.
70
,
460
474
(
1946
).
4.
H. Y.
Carr
, “
Free precession techniques in nuclear magnetic resonance
,” Ph.D. thesis,
Harvard University
,
Cambridge, MA
,
1952
.
5.
R.
Damadian
, “
Tumor detection by nuclear magnetic resonance
,”
Science
171
,
1151
(
1971
).
6.
P. C.
Lauterbur
, “
Magnetic resonance zeugmatography
,”
Pure Appl. Chem.
40
149
157
(
1974
).
7.
G. N.
Hounsfield
, “
Computerized transverse axial scanning (tomography): Part I. Description of system
,”
Br. J. Radiol.
46
,
1016
1022
(
1973
).
8.
P. T.
Callaghan
, “
Rheo-NMR and velocity imaging
,”
Curr. Opin. Colloid Interface Sci.
11
,
13
18
(
2006
).
9.
T. G.
Walker
and
W.
Happer
, “
Spin-exchange optical pumping of noble-gas nuclei
,”
Rev. Mod. Phys.
69
,
629
(
1997
);
J. H.
Ardenkjær-Larsen
 et al, “
Increase in signal-to-noise ratio of >10 000 times in liquid-state NMR
,
Proc. Natl. Acad. Sci. U. S. A.
100
,
10158
10163
(
2003
).
[PubMed]
10.
R.
Wang
,
M. S.
Rosen
,
D.
Candela
,
R. W.
Mair
, and
R. L.
Walsworth
, “
Study of gas-fluidization dynamics with laser-polarized 129Xe
,”
Magn. Reson. Imaging
23
,
203
207
(
2005
).
11.
A. A.
Samoilenko
,
D. Y.
Artemov
, and
L. A.
Sibeldina
, “
Formation of sensitive layer in experiments on NMR subsurface imaging of solids
,”
JETP Lett.
47
,
417
419
(
1988
); available at http://jetpletters.ac.ru/ps/1094/article_16529.pdf.
12.
G. M.
Bydder
and
I. R.
Young
, “
MR imaging: Clinical use of the inversion recovery technique
,”
J. Comput. Assisted Tomogr.
9
,
659
675
(
1985
).
13.
A.
Haase
,
J.
Frahm
,
W.
Hänicke
, and
D.
Matthaei
, “
1H NMR chemical shift selective (CHESS) imaging
,”
Phys. Med. Biol.
30
,
341
344
(
1985
).
14.
D. B.
Twieg
, “
The k-trajectory formulation of the NMR imaging process with applications in analysis and synthesis of imaging methods
,”
Med. Phys.
10
,
610
(
1983
).
15.
P.
Mansfield
, “
Multi-planar image-formation using NMR spin echoes
,”
J. Phys. C: Solid State Phys.
10
,
L55
(
1977
).
16.
J.
Hennig
,
A.
Nauerth
, and
H.
Friedburg
, “
RARE imaging: A fast imaging method for clinical MR
,”
Magn. Reson. Med.
3
,
823
(
1986
).
17.
R. L.
DeLaPaz
, “
Echo-planar imaging
,”
Radiographics
14
,
1045
1058
(
1994
);
[PubMed]
P.
Jezzard
and
R. S.
Balaban
, “
Correction for geometric distortion in echo-planar images fromB0 field variations
,”
Magn. Reson. Med.
34
,
65
73
(
1995
);
[PubMed]
V.
Renvall
,
T.
Witzel
,
L. L.
Wald
, and
J. R.
Polimeni
, “
Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data
,”
Neuroimage
134
,
338
354
(
2016
).
[PubMed]
18.
A.
Haase
,
J.
Frahm
,
S.
Matthaei
,
W.
Hanicke
, and
K. D.
Merboldt
, “
FLASH imaging: Rapid NMR imaging using low flip-angle pulses
,”
J. Magn. Reson.
67
,
258
266
(
1986
);
A.
Haase
,
J.
Frahm
,
S.
Matthaei
,
W.
Hanicke
, and
K. D.
Merboldt
, “
FLASH imaging: Rapid NMR imaging using low flip-angle pulses
,”
J. Magn. Reson.
213
,
533
-
541
(
2011
);
[PubMed]
A.
Haase
,
J.
Frahm
,
S.
Matthaei
,
W.
Hanicke
, and
K. D.
Merboldt
, “
FLASH MR imaging: A success story since 25 years
,”
J. Magn. Reson.
213
,
542
(
2011
).
[PubMed]
19.
E.
Fukushima
, “
Nuclear magnetic resonance as a tool to study flow
,”
Annu. Rev. Fluid Mech.
31
,
95
123
(
1999
).
20.
L. F.
Gladden
and
A. J.
Sederman
, “
Recent advances in flow MRI
,”
J. Magn. Reson.
229
,
2
11
(
2013
).
21.
L.
Axel
and
L.
Dougherty
, “
MR imaging of motion with spatial modulation of magnetization
,”
Radiology
171
,
841
(
1989
).
22.
A. D.
Hanlon
,
S. J.
Gibbs
,
L. D.
Hall
,
D. E.
Haycock
,
W. J.
Frith
, and
S.
Ablett
, “
Rapid MRI and velocimetry of cylindrical Couette flow
,”
Magn. Reson. Imaging
16
,
953
961
(
1998
).
23.
D.
Le Bihan
 et al,
Radiology
161
,
401
407
(
1986
);
[PubMed]
R.
Bammer
, “
Basic principles of diffusion-weighted imaging
,”
Eur. J. Radiol.
45
,
169
(
2003
).
[PubMed]
24.
S. A.
Altobelli
,
A.
Caprihan
,
E.
Fukushima
,
M.
Nakagawa
, and
R. C.
Givler
, “
Multiphase flow studies by NMR with application to granular flows
,” in
Proceedings Joint DOE/NSF Workshop on Flow of Particulates and Fluids
(
U.S. DOE
,
1991
), pp.
34
40
.
25.
E. E.
Ehrichs
,
H. M.
Jaeger
,
G. S.
Karczmar
,
J. B.
Knight
,
V. Yu.
Kuperman
, and
S. R.
Nagel
, “
Granular convection observed by magnetic resonance imaging
,”
Science
267
,
1632
(
1995
).
26.
C. A.
Baldwin
,
A. J.
Sederman
,
M. D.
Mantle
,
P.
Alexander
, and
L. F.
Gladden
, “
Determination and characterization of the structure of a pore space from 3D volume images
,”
J. Colloid Interface Sci.
181
,
79
92
(
1996
);
L. F.
Gladden
and
P.
Alexander
, “
Applications of nuclear magnetic resonance imaging in process engineering
,”
Meas. Sci. Technol.
7
,
423
435
(
1996
);
A. J.
Sederman
,
M. L.
Johns
,
A. S.
Bramley
,
P.
Alexander
, and
L. F.
Gladden
, “
Magnetic resonance imaging of liquid flow and pore structure within packed beds
,”
Chem. Eng. Sci.
52
,
2239
2250
(
1997
).
27.
N.
Sommier
,
P.
Porion
,
P.
Evesque
,
B.
Leclerc
,
P.
Tchoreloff
, and
G.
Couarraze
, “
Magnetic resonance imaging investigation of the mixing-segregation process in a pharmaceutical blender
,”
Int. J. Pharm.
222
,
243
258
(
2001
).
28.
D.
Bonn
,
S.
Rodts
,
M.
Groenink
,
S.
Rafaï
,
N.
Shahidzadeh-Bonn
, and
P.
Coussot
, “
Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids
,”
Annu. Rev. Fluid Mech.
40
,
209
233
(
2008
).
29.
L. F.
Gladden
, “
Magnetic resonance in reaction engineering: Beyond spectroscopy
,”
Curr. Opin. Chem. Eng.
2
,
331
337
(
2013
).
30.
I. V.
Koptyuk
, “
Magnetic resonance imaging methods in heterogeneous catalysis
,” in
Spectroscopic Properties of Inorganic and Organometallic Compounds
, edited by
R.
Douthwaite
,
S.
Duckett
, and
J.
Yarwood
(
Royal Society of Chemistry
,
2014
), Vol. 45, p.
1
.
31.
T.
Hales
, “
A proof of the Kepler conjecture
,”
Ann. Math.
162
,
1065
(
2005
).
32.
A.
Donev
,
I.
Cisse
,
D.
Sachs
,
E. A.
Variano
,
F. H.
Stillinger
,
R.
Connelly
,
S.
Torquato
, and
P. M.
Chaikin
, “
Improving the density of jammed disordered packings using ellipsoids
,”
Science
303
,
990
993
(
2004
).
33.
J. D.
Bernal
and
J.
Mason
, “
Co-ordination of randomly packed spheres
,”
Nature
188
,
910
911
(
1960
).
34.
G. D.
Scott
, “
Radial distribution of the random close packing of equal spheres
,”
Nature
194
,
956
(
1962
).
35.
T.
Aste
,
M.
Saadatfar
, and
T. J.
Senden
, “
Geometrical structure of disordered sphere packings
,”
Phys. Rev. E
71
,
061302
(
2005
).
36.
F. M.
Schaller
,
M.
Neudecker
,
M.
Saadatfar
,
G.
Delaney
,
K.
Mecke
,
G. E.
Schröder-Turk
, and
M.
Schröter
, “
Tomographic analysis of jammed ellipsoid packings
,”
AIP Conf. Proc.
1542
,
377
(
2013
).
37.
R.
Balzan
,
A. L.
Sellerio
,
D.
Mari
,
A.
Comment
, and
G.
Gremaud
, “
A link between short-range and long-range properties of random sphere packings
,”
Granular Matter
15
,
873
879
(
2013
).
38.
R.
Balzan
,
A. L.
Sellerio
,
D.
Mari
, and
A.
Comment
, “
High-precision MRI reconstruction algorithm for 3D sphere packings
,”
Appl. Magn. Reson.
46
,
633
642
(
2015
).
39.
P.
Moucheront
,
F.
Bertrand
,
G.
Koval
,
L.
Tocquer
,
S.
Rodts
,
J.-N.
Roux
,
A.
Corfdir
, and
F.
Chevoir
, “
MRI investigation of granular interface rheology using a new cylinder shear apparatus
,”
Magn. Reson. Imaging
28
,
910
918
(
2010
).
40.
K.
Sakaie
,
D.
Fenistein
,
T. J.
Carroll
,
M.
van Hecke
, and
P.
Umbanhowar
, “
MR imaging of Reynolds dilatancy in the bulk of smooth granular flows
,”
Europhys. Lett.
84
,
38001
(
2008
);
41.
S.
Kiesgen de Richter
 et al, “
Vibration-induced compaction of granular suspensions
,”
Eur. Phys. J. E
38
,
74
(
2015
).
42.
M. A.
Turney
,
M. K.
Cheung
,
M. J.
McCarthy
, and
R. L.
Powell
, “
Magnetic resonance imaging study of sedimenting suspensions of noncolloidal spheres
,”
Phys. Fluids
7
,
904
(
1995
).
43.
M. A.
Turney
,
M. K.
Cheung
,
R. L.
Powell
, and
M. J.
McCarthy
, “
Hindered settling of rod-like particles measured with magnetic resonance imaging
,”
AIChE J.
41
,
251
(
1995
).
44.
K. M.
Hill
,
A.
Caprihan
, and
J.
Kakalios
,
Phys. Rev. Lett.
78
,
50
(
1997
).
45.
K. M.
Hill
,
A.
Caprihan
, and
J.
Kakalios
, “
Axial segregation of granular media rotated in a drum mixer: Pattern evolution
,”
Phys. Rev. E
56
,
4386
(
1997
).
46.
G. H.
Ristow
and
M.
Nakagawa
, “
Shape dynamics of interfacial front in rotating cylinders
,”
Phys. Rev. E
59
,
2044
(
1999
).
47.
T.
Finger
,
A.
Voigt
,
J.
Stadler
,
H. G.
Niessen
,
L.
Naji
, and
R.
Stannarius
, “
Coarsening of axial segregation patterns of slurries in a horizontally rotating drum
,”
Phys. Rev. E
74
,
031312
(
2006
).
48.
L.
Naji
and
R.
Stannarius
, “
Axial and radial segregation of granular mixtures in a rotating spherical container
,”
Phys. Rev. E
79
,
031307
(
2009
).
49.
G.
Metcalfe
and
M.
Shattuck
, “
Pattern formation during mixing and segregation of flowing granular materials
,”
Physica A
233
,
709
(
1996
).
50.
G.
Metcalfe
,
L.
Graham
,
J.
Zhou
, and
K.
Liffman
, “
Measurement of particle motions within tumbling granular flows
,”
Chaos
9
,
581
(
1999
).
51.
A. J.
Sederman
,
L. F.
Gladden
, and
M. D.
Mantle
, “
Application of magnetic resonance imaging techniques to particulate systems
,”
Adv. Polym. Technol.
18
,
23
38
(
2007
).
52.
T. T. M.
Nguyen
,
A. J.
Sederman
,
M. D.
Mantle
, and
L. F.
Gladden
, “
Segregation in horizontal rotating cylinders using magnetic resonance imaging
,”
Phys. Rev. E
84
,
011304
(
2011
).
53.
P.
Porion
,
N.
Sommier
,
A.-M.
Faugere
, and
P.
Evesque
, “
Dynamics of size segregation and mixing of granular materials in a 3D-blender by NMR imaging investigation
,”
Powder Technol.
141
,
55
68
(
2004
);
P.
Porion
,
A.-M.
Faugere
,
N.
Sommier
, and
P.
Evesque
, “
How to use Turbula (R) mixer as a good blender with dry beads
,” in Powders and Grains, edited by
Y.
Kishino
(
A. A.
Balkema
, Rotterdam,
2001
), pp.
335
338
54.
X.
Cheng
,
J. B.
Lechman
,
A.
Fernandez-Barbero
,
G. S.
Grest
,
H. M.
Jaeger
,
G. S.
Karczmar
,
M. E.
Möbius
, and
S. R.
Nagel
, “
Three-dimensional shear in granular flow
,”
Phys. Rev. Lett.
96
,
038001
(
2006
).
55.
T.
Börzsönyi
,
T.
Unger
,
B.
Szabó
,
S.
Wegner
,
F.
Angenstein
, and
R.
Stannarius
, “
Reflection and exclusion of shear zones in inhomogeneous granular materials
,”
Soft Matter
7
,
8330
(
2011
).
56.
M.
Nakagawa
,
S. A.
Altobelli
,
A.
Caprihan
, and
E.
Fukushima
, “
NMRI study: Axial migration of radially segregated core of granular mixtures in a horizontal rotating cylinder
,”
Chem. Eng. Sci.
52
,
4423
4428
(
1997
).
57.
D.
Fischer
,
T.
Finger
,
F.
Angenstein
, and
R.
Stannarius
, “
Diffusive and subdiffusive axial transport of granular material in rotating mixers
,”
Phys. Rev. E
80
,
061302
(
2009
).
58.
Z. S.
Khan
and
S. W.
Morris
, “
Subdiffusive axial transport of granular materials in a long drum mixer
,”
Phys. Rev. Lett.
94
,
048002
(
2005
).
59.
N.
Taberlet
and
P.
Richard
, “
Diffusion of a granular pulse in a rotating drum
,”
Phys. Rev. E
73
,
041301
(
2006
).
60.
J. B.
Knight
,
H. M.
Jaeger
, and
S. R.
Nagel
,
Phys. Rev. Lett.
70
,
3728
(
1993
).
61.
V. Yu.
Kuperman
,
E. E.
Ehrichs
,
H. M.
Jaeger
, and
G. S.
Karczmar
,
Rev. Sci. Instrum.
66
,
4350
(
1995
).
62.
J. B.
Knight
,
E. E.
Ehrichs
,
V. Yu.
Kuperman
,
J. K.
Flint
,
H. M.
Jaeger
, and
S. R.
Nagel
, “
Experimental study of granular convection
,”
Phys. Rev. E
54
,
5726
(
1996
).
63.
X.
Ren
,
S.
Stapf
, and
B.
Kimmich
, “
Magnetic resonance visualization of flow and pore structure in packed beds with low aspect ratio
,”
Chem. Eng. Technol.
28
,
219
(
2005
).
64.
S. A.
Altobelli
,
R. C.
Givler
, and
E.
Fukushima
, “
Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging
,”
J. Rheol.
35
,
721
(
1991
).
65.
A. L.
Graham
,
S. A.
Altobelli
,
L. A.
Mondy
, and
T. S.
Stephens
, “
NMR imaging of shear-induced diffusion and structure in concentrated suspensions undergoing Couette flow
,”
J. Rheol.
35
,
191
201
(
1991
).
66.
J. R.
Abbott
,
N.
Tetlow
,
A. L.
Graham
,
S. A.
Altobelli
,
E.
Fukushima
,
L. A.
Mondy
, and
T.
S Stephens
, “
Experimental observations of particle migration in concentrated suspensions: Couette flow
,”
J. Rheol.
35
,
773
95
(
1991
).
67.
S. A.
Altobelli
,
E.
Fukushima
, and
L. A.
Mondy
, “
Nuclear magnetic resonance imaging of particle migration in suspensions undergoing extrusion
,”
J. Rheol.
41
,
1105
(
1997
).
68.
D. M.
Mueth
,
G. F.
Debregeas
,
G. S.
Karczmar
,
P. J.
Eng
,
S. R.
Nagel
, and
H. M.
Jaeger
, “
Signatures of granular microstructure in dense shear flows
,”
Nature
406
,
385
(
2000
).
69.
T.
Kawaguchi
,
T.
Yoshida
, and
Y.
Tsuji
, “
MRI measurement of particle velocity in spouted bed
,”
J. JSEM
7
,
12
(
2007
).
70.
S. A.
Altobelli
,
A.
Caprihan
,
H. A.
Cheng
,
E.
Fukushima
,
M.
Nakagawa
, and
L. Z.
Wang
, “
Granular flow studies by NMR
,” in
Proceedings Joint DOE/NSF Workshop on flow of particulates and fluids
(
U.S. DOE
,
1993
), p.
233
, http://www.osti.gov/scitech/servlets/purl/10141203.
71.
M.
Nakagawa
,
S. A.
Altobelli
,
A.
Caprihan
,
E.
Fukushima
, and
E.-K.
Jeong
, “
Non-invasive measurements of granular flows by resonance imaging
,”
Exp. Fluids
16
,
54
60
(
1993
).
72.
M.
Nakagawa
,
S. A.
Altobelli
,
A.
Caprihan
, and
E.
Fukushima
, in
Powders and Grains
, edited by
R. P.
Behringer
and
J. T.
Jenkins
(
A. A.
Balkema
,
Rotterdam
,
1997
), p.
447
.
73.
K.
Yamane
,
M.
Nakagawa
,
S. A.
Altobelli
,
T.
Tanaka
, and
Y.
Tsuji
, “
Steady particulate flows in a horizontal rotating cylinder
,”
Phys. Fluids
10
,
1419
(
1998
).
74.
J. D.
Seymour
,
A.
Caprihan
,
S. A.
Altobelli
, and
E.
Fukushima
, “
Pulsed gradient spin echo nuclear magnetic resonance imaging of diffusion in granular flow
,”
Phys. Rev. Lett.
84
,
266
269
(
2000
).
75.
M.
Gentzler
and
G. I.
Tardos
, “
Measurement of velocity and density profiles in discharging conical hoppers by NMR imaging
,”
Chem. Eng. Sci.
64
,
4463
4469
(
2009
).
76.
A.
Caprihan
,
E.
Fukushima
,
A. D.
Rosato
, and
M.
Kos
, “
Magnetic resonance imaging of vibrating granular beds by spatial scanning
,”
Rev. Sci. Instrum.
68
,
4217
4220
(
1997
).
77.
C.
Huan
,
X. Y.
Yang
,
D.
Candela
,
R. W.
Mair
, and
R. L.
Walsworth
, “
NMR experiments on a three-dimensional vibrofluidized granular medium
,”
Phys. Rev. E
69
,
041302
(
2004
).
78.
J. M.
Huntley
,
T.
Tarvaz
,
M. D.
Mantle
,
A. J.
Sederman
,
L. F.
Gladden
,
N. A.
Sheikh
, and
R. D.
Wildman
, “
Nuclear magnetic resonance measurements of velocity distributions in an ultrasonically vibrated granular bed
,”
Philos. Trans. R. Soc., A
372
,
20130185
(
2014
).
79.
P. S.
Fennell
,
J. F.
Davidson
,
J. S.
Dennis
,
L. F.
Gladden
,
A. N.
Hayhurst
,
M. D.
Mantle
,
C. R.
Müller
,
A. C.
Rees
,
S. A.
Scott
, and
A. J.
Sederman
, “
A study of the mixing of solids in gas-fluidized beds, using ultra-fast MRI
,”
Chem. Eng. Sci.
60
,
2085
2088
(
2006
).
80.
M.
Bieberle
,
F.
Fischer
,
E.
Schleicher
,
H. J.
Menz
,
H. G.
Mayer
, and
U.
Hampel
, “
Ultrafast cross-sectional imaging of gas-particle flow in a fluidized bed
,”
AIChE J.
56
,
2221
2225
(
2010
).
81.
S.
Harms
,
S.
Stapf
, and
B.
Blümich
, “
Application of k- and q-space encoding NMR techniques on granular media in a 3D model fluidized bed reactor
,”
J. Magn. Reson.
178
,
308
317
(
2006
).
82.
A. C.
Rees
,
J. F.
Davidson
,
J. S.
Dennis
,
P. S.
Fennell
,
L. F.
Gladden
,
A. N.
Hayhurst
,
M. D.
Mantle
,
C. R.
Mueller
, and
A. J.
Sederman
, “
A study of the nature of the flow just above the distributor of a gas-fluidized bed, using magnetic resonance imaging
,”
Chem. Eng. Sci.
61
,
6002
6015
(
2006
).
83.
C. R.
Müller
,
J. F.
Davidson
,
J. S.
Dennis
,
P. S.
Fennell
,
L. F.
Gladden
,
A. N.
Hayhurst
,
M. D.
Mantle
,
A. C.
Rees
, and
A. J.
Sederman
, “
Real-time measurement of bubbling phenomena in a three-dimensional gas-fluidized bed using ultrafast magnetic resonance imaging
,”
Phys. Rev. Lett.
96
,
154504
(
2006
).
84.
C. R.
Müller
,
J. F.
Davidson
,
J. S.
Dennis
,
P. S.
Fennell
,
L. F.
Gladden
,
A. N.
Hayhurst
,
M. D.
Mantle
,
A. C.
Rees
, and
A. J.
Sederman
, “
Rise velocities of bubbles and slugs in gas-fluidised beds: Ultra-fast magnetic resonance imaging
,”
Chem. Eng. Sci.
62
,
82
93
(
2007
).
85.
C. R.
Müller
,
D. J.
Holland
,
A. J.
Sederman
,
M. D.
Mantle
,
L. F.
Gladden
, and
J. F.
Davidson
, “
Magnetic resonance imaging of fluidized beds
,”
Powder Technol.
183
,
53
62
(
2008
).
86.
C. R.
Müller
,
D. J.
Holland
,
J. R.
Third
,
A. J.
Sederman
,
J. S.
Dennis
, and
L. F.
Gladden
, “
Multi-scale magnetic resonance measurements and validation of discrete element model simulations
,”
Particuology
9
,
330
341
(
2011
).
87.
M. H.
Köhl
,
J. R.
Third
,
K. P.
Prüssmann
, and
C. R.
Müller
, “
A magnetic resonance imaging (MRI) study of the formation and interaction of spouts and jets
,” in
The 14th International Conference on Fluidization From Fundamentals to Products
, ECI Symposium Series,
2013
, http://dc.engconfintl.org/fluidization_xiv/81.
88.
M. H.
Köhl
,
G.
Lu
,
J. R.
Third
,
K. P.
Prüssmann
, and
C. R.
Müller
, “
Magnetic resonance imaging (MRI) of jet height hysteresis in packed beds
,”
Chem. Eng. Sci.
109
,
276
283
(
2014
).
89.
Q.
Zhang
,
Y. F.
Zhou
,
J. D.
Wang
,
B. B.
Jiang
,
Y. R.
Yang
,
S.
Stapf
,
C.
Mattea
, and
Q. X.
Gong
, “
Particle motion in two- and three-phase fluidized-bed reactors determined by pulsed field gradient nuclear magnetic resonance
,”
Chem. Eng. Tech.
38
,
1269
1276
(
2015
).
90.
A.
Penn
,
K. P.
Pruessmann
, and
C.
Müller
, “
Real-time magnetic resonance imaging of highly dynamic granular phenomena
,”
Bull. Am. Phys. Soc.
61
(
2
) (
2016
), APS March Meeting 2016, Abstract No. P43.00009;
C.
Müller
,
A.
Penn
, and
K. P.
Pruessmann
, “
Fast magnetic resonance imaging of the internal impact response of dense granular suspensions
,”
Bull. Am. Phys. Soc.
61
(
2
) (
2016
), APS March Meeting 2016, Abstract No. F43.00010.
91.
Y. T.
Makkawi
and
P. C.
Wright
, “
Fluidization regimes in a conventional fluidized bed characterized by means of electrical capacitance tomography
,”
Chem. Eng. Sci.
57
,
2411
2437
(
2002
).
92.
T. C.
Chandrasekera
,
A.
Wang
,
D. J.
Holland
,
Q.
Marashdeh
,
M.
Pore
,
F.
Wang
,
A. J.
Sederman
,
L. S.
Fan
,
L. F.
Gladden
, and
J. S.
Dennis
, “
A comparison of magnetic resonance imaging and electrical capacitance tomography: An air jet through a bed of particles
,”
Powder Technol.
227
,
86
95
(
2012
).
93.
R. D.
Maladen
,
Y.
Ding
,
C.
Li
, and
D.
Goldman
, “
Undulatory swimming in sand: Subsurface locomotion of the sandfish lizard
,”
Science
325
,
314
318
(
2009
).
94.
R. D.
Maladen
,
Y.
Ding
,
P. B.
Umbanhowar
,
A.
Kamor
, and
D. I.
Goldman
, “
Mechanical models of sandfish locomotion reveal principles of high performance subsurface sand-swimming
,”
J. R. Soc., Interface
8
,
1332
1345
(
2011
).
95.
W.
Baumgartner
,
F.
Fidler
,
A.
Weth
,
M.
Habbecke
,
P.
Jakob
,
C.
Butenweg
, and
W.
Böhme
, “
Investigating the locomotion of the sandfish in desert sand using NMR-imaging
,”
PLoS One
3
,
e3309
(
2008
).
96.
C. R. K.
Windows-Yule
,
B. J.
Scheper
,
A. J.
van der Horn
,
N.
Hainsworth
,
J.
Saunders
,
D. J.
Parker
, and
A. R.
Thornton
, “
Understanding and exploiting competing segregation mechanisms in horizontally rotated granular media
,”
New J. Phys.
18
,
023013
(
2016
).
97.
J. A.
Dijksman
,
F.
Rietz
,
K. A.
Lörincz
,
M.
van Hecke
, and
W.
Losert
, “
Refractive index matched scanning of dense granular materials
,”
Rev. Sci. Instrum.
83
,
011301
(
2012
).
98.
S. M.
Huang
,
A.
Plaskowski
,
C. G.
Xie
, and
M. S.
Beck
, “
Capacitance-based tomographic flow imaging system
,”
Electron. Lett.
24
,
418
419
(
1988
).
You do not currently have access to this content.