Positron emission particle tracking (PEPT) is a technique for tracking a single radioactively labelled particle. Accurate 3D tracking is possible even when the particle is moving at high speed inside a dense opaque system. In many cases, tracking a single particle within a granular system provides sufficient information to determine the time-averaged behaviour of the entire granular system. After a general introduction, this paper describes the detector systems (PET scanners and positron cameras) used to record PEPT data, the techniques used to label particles, and the algorithms used to process the data. This paper concentrates on the use of PEPT for studying granular systems: the focus is mainly on work at Birmingham, but reference is also made to work from other centres, and options for wider diversification are suggested.

1.
J. S.
Lin
,
M. M.
Chen
, and
B. T.
Chao
, “
A novel radioactive particle tracking facility for measurement of solids motion in gas fluidized beds
,”
AIChE J.
31
,
465
473
(
1985
).
2.
D.
Moslemian
,
N.
Devanathan
, and
M. P.
Dudukovic
, “
Radioactive particle tracking technique for investigation of phase recirculation and turbulence in multiphase systems
,”
Rev. Sci. Instrum.
63
,
4361
4372
(
1992
).
3.
F.
Larachi
,
J.
Chaouki
, and
G.
Kennedy
, “
3-D mapping of solids flow fields in multiphase reactors with RPT
,”
AIChE J.
41
,
439
443
(
1995
).
4.
L.
Godfroy
,
F.
Larachi
,
G.
Kennedy
,
B. P. A.
Grandjean
, and
J.
Chaouki
, “
On-line flow visualization in multiphase reactors using neural networks
,”
Appl. Radiat. Isot.
48
,
225
235
(
1997
).
5.
M. M.
Ter-Pogossian
,
M.E.
Phelps
,
E. J.
Hoffman
, and
N. A.
Mullani
, “
A positron-emission transaxial tomograph for nuclear imaging (PET)
,”
Radiology
114
(
1
),
89
98
(
1975
).
6.
T. J.
Spinks
,
T.
Jones
,
M. C.
Gilardi
, and
J. D.
Heather
, “
Physical performance of the latest generation of commercial positron scanner
,”
IEEE Trans. Nucl. Sci.
35
(
1
),
721
(
1988
).
7.
M. R.
Hawkesworth
,
D. J.
Parker
,
P.
Fowles
,
J. F.
Crilly
,
N. L.
Jefferies
, and
G.
Jonkers
, “
Nonmedical applications of a positron camera
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
310
,
423
434
(
1991
).
8.
D. J.
Parker
,
C. J.
Broadbent
,
P.
Fowles
,
M. R.
Hawkesworth
, and
P. A.
McNeil
, “
Positron emission particle tracking - a technique for studying flow within engineering equipment
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
326
,
592
607
(
1993
).
9.
D. J.
Parker
,
R. N.
Forster
,
P.
Fowles
, and
P. S.
Takhar
, “
Positron emission particle tracking using the new Birmingham positron camera
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
477
,
540
545
(
2002
).
10.
C. S.
Stellema
,
J.
Vlek
,
R. F.
Mudde
,
J. J. M.
de Goeij
, and
C. M.
van den Bleek
, “
Development of an improved positron emission particle tracking system
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
404
,
334
348
(
1998
).
11.
A. C.
Hoffmann
,
C.
Dechsiri
,
F.
van de Wiel
, and
H. G.
Dehling
, “
PET investigation of a fluidized particle: Spatial and temporal resolution and short term motion
,”
Meas. Sci. Technol.
16
,
851
858
(
2005
).
12.
Y. F.
Chang
and
A. C.
Hoffmann
, “
A Lagrangian study of liquid flow in a reverse-flow hydrocyclone using positron emission particle tracking
,”
Exp. Fluids
56
,
4
(
2015
).
13.
S.
Langford
,
C.
Wiggins
,
D.
Tenpenny
, and
A.
Ruggles
, “
Positron emission particle tracking (PEPT) for fluid flow measurements
,”
Nucl. Eng. Des.
302
,
81
89
(
2016
).
14.
T. S.
Volkwyn
,
A.
Buffler
,
I.
Govender
,
J. P.
Franzidis
,
A. J.
Morrison
,
A.
Odo
,
N. P.
van der Meulen
, and
C.
Vermeulen
, “
Studies of the effect of tracer activity on time-averaged positron emission particle tracking measurements on tumbling mills at PEPT Cape Town
,”
Miner. Eng.
24
,
261
266
(
2011
).
15.
M. R.
Hawkesworth
,
M. A.
O’Dwyer
,
J.
Walker
,
P.
Fowles
,
J.
Heritage
,
P. A. E.
Stewart
,
R. C.
Witcomb
,
J. E.
Bateman
,
J. F.
Connolly
, and
R.
Stephenson
, “
A positron camera for industrial application
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
253
,
145
157
(
1986
).
16.
D. J.
Parker
,
T. W.
Leadbeater
,
X.
Fan
,
M. N.
Hausard
,
A.
Ingram
, and
Z.
Yang
, “
Positron emission particle tracking using a modular positron camera
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
604
,
339
342
(
2009
).
17.
T. W.
Leadbeater
and
D. J.
Parker
, “
A modular positron camera for the study of industrial processes
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
652
,
646
649
(
2011
).
18.
A.
Ingram
,
M.
Hausard
,
X.
Fan
,
D. J.
Parker
,
J. P. K.
Seville
,
N.
Finn
, and
M.
Evans
, “
Portable positron emission particle tracking (PEPT) for industrial use
,” in
The 12th International Conference on Fluidization - New Horizons in Fluidization Engineering
, edited by
F.
Berruti
,
X.
Bi
, and
T.
Pugsley
(
ECI Symposium Series
,
2007
), Vol. RP4, http://dc.engconfintl.org/fluidization_xii/60.
19.
X.
Fan
,
D. J.
Parker
, and
M. D.
Smith
, “
Enhancing F-18 uptake in a single particle for positron emission particle tracking through modification of solid surface chemistry
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
558
,
542
546
(
2006
).
20.
K. E.
Cole
,
A.
Buffler
,
N. P.
van der Meulen
,
J. J.
Cilliers
,
J. P.
Franzidis
,
I.
Govender
,
C.
Liu
, and
M. R.
van Heerden
, “
Positron emission particle tracking measurements with 50 micron tracers
,”
Chem. Eng. Sci.
75
,
235
242
(
2012
).
21.
Z.
Yang
,
D. J.
Parker
,
P. J.
Fryer
,
S.
Bakalis
, and
X.
Fan
, “
Multiple-particle tracking - an improvement for positron particle tracking
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
564
,
332
338
(
2006
).
22.
M.
Bickell
,
A.
Buffler
,
I.
Govender
, and
D. J.
Parker
, “
A new line density tracking algorithm for PEPT and its application to multiple tracers
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
682
,
36
41
(
2012
).
23.
R. D.
Wildman
,
J. M.
Huntley
, and
D. J.
Parker
, “
Convection in highly fluidized three-dimensional granular beds
,”
Phys. Rev. Lett.
86
,
3304
3307
(
2001
).
24.
R. D.
Wildman
and
D. J.
Parker
, “
Coexistence of two granular temperatures in binary vibrofluidized beds
,”
Phys. Rev. Lett.
88
,
064301
(
2002
).
25.
C. R. K.
Windows-Yule
,
N.
Rivas
, and
D. J.
Parker
, “
Thermal convection and temperature inhomogeneity in a vibrofluidized granular bed: The influence of sidewall dissipation
,”
Phys. Rev. Lett.
111
,
038001
(
2013
).
26.
C. R. K.
Windows-Yule
and
D. J.
Parker
, “
Inelasticity-induced segregation: Why it matters, when it matters
,”
Europhys. Lett.
106
,
64003
(
2014
).
27.
C. R. K.
Windows-Yule
,
A. D.
Rosato
,
A. R.
Thornton
, and
D. J.
Parker
, “
Resonance effects on the dynamics of dense granular beds: Achieving optimal energy transfer in vibrated granular systems
,”
New J. Phys.
17
,
023015
(
2015
).
28.
C. R. K.
Windows-Yule
,
N.
Rivas
,
D. J.
Parker
, and
A. R.
Thornton
, “
Low-frequency oscillations and convective phenomena in a density-inverted vibrofluidized granular system
,”
Phys. Rev. E
90
,
062205
(
2014
).
29.
M.
Stein
,
Y. L.
Ding
,
J. P. K.
Seville
, and
D. J.
Parker
, “
Solids motion in bubbling gas fluidised beds
,”
Chem. Eng. Sci.
55
,
5291
5300
(
2000
).
30.
C. W.
Chan
,
J. P. K.
Seville
,
D. J.
Parker
, and
J.
Baeyens
, “
Particle velocities and their residence time distribution in the riser of a CFB
,”
Powder Technol.
203
,
187
197
(
2010
).
31.
D. J.
Parker
,
A. E.
Dijkstra
,
T. W.
Martin
, and
J. P. K.
Seville
, “
Positron emission particle tracking studies of spherical particle motion in rotating drums
,”
Chem. Eng. Sci.
52
,
2011
2022
(
1997
).
32.
Y. L.
Ding
,
J. P. K.
Seville
,
R.
Forster
, and
D. J.
Parker
, “
Solids motion in rolling mode rotating drums operated at low to medium rotational speeds
,”
Chem. Eng. Sci.
56
,
1769
1780
(
2001
).
33.
S. Y.
Lim
,
J. F.
Davidson
,
R. N.
Forster
,
D. J.
Parker
,
D. M.
Scott
, and
J. P. K.
Seville
, “
Avalanching of granular material in a horizontal slowly rotating cylinder: PEPT studies
,”
Powder Technol.
138
,
25
30
(
2003
).
34.
I.
Govender
,
N.
Mangesana
,
A. N.
Mainza
, and
J.P.
Franzidis
, “
Measurement of shear rates in a laboratory tumbling mill
,”
Miner. Eng.
24
,
225
229
(
2011
).
35.
A.
Ingram
,
J. P. K.
Seville
,
D. J.
Parker
,
X.
Fan
, and
R. G.
Forster
, “
Axial and radial dispersion in rolling mode rotating drums
,”
Powder Technol.
158
,
76
91
(
2005
).
36.
S.
Gonzalez
,
C. R. K.
Windows-Yule
,
S.
Luding
,
D. J.
Parker
, and
A. R.
Thornton
, “
Forced axial segregation in axially inhomogeneous rotating systems
,”
Phys. Rev. E
92
,
022202
(
2015
).
37.
T.
Kinugasa
,
K.
Kuwagi
,
T. W.
Leadbeater
,
J.
Gargiuli
,
D. J.
Parker
,
J. P. K.
Seville
,
K.
Yoshida
, and
H.
Amano
, “
Three-dimensional dynamic imaging of sand particles under wheel via gamma-ray camera system
,”
J. Terramech.
62
,
5
17
(
2015
).
38.
R. F.
Shaw
, “
Signalling particles for introduction into blood flowing through a vessel of interest
,” U.S. patent 4224303 A (23 September
1980
).
You do not currently have access to this content.