The ability to measure nanoradian polarization rotations, θF, in the photon shot noise limit is investigated for partially crossed polarizers (PCP), a static Sagnac interferometer, and an optical bridge, each of which can in principle be used in this limit with near equivalent figures-of-merit (FOM). In practice a bridge to PCP/Sagnac source noise rejection ratio of 1/4θF2 enables the bridge to operate in the photon shot noise limit even at high light intensities. The superior performance of the bridge is illustrated via the measurement of a 3 nrad rotation arising from an axial magnetic field of 0.9 nT applied to a terbium gallium garnet. While the Sagnac is functionally equivalent to the PCP in terms of the FOM, unlike the PCP it is able to discriminate between rotations with different time (T) and parity (P) symmetries. The Sagnac geometry implemented here is similar to that used elsewhere to detect non-reciprocal (T¯P) rotations like those due to the Faraday effect. Using a Jones’ matrix approach, novel Sagnac geometries uniquely sensitive to non-reciprocal TP¯ (e.g. magneto-electric or magneto-chiral) rotations, as well as to reciprocal rotations (e.g. due to linear birefringence, TP, or to chirality, TP¯) are proposed.

1.
C.
Su
,
S.
Chang
, and
Y.
Chang
,
AIP Adv.
3
,
72125
(
2013
).
2.
M.
Atatüre
,
J.
Dreiser
,
A.
Badolato
, and
A.
Imamoglu
,
Nat. Phys.
3
,
101
(
2007
).
3.
M. R.
Koblischka
and
R. J.
Wijngaarden
,
Supercond. Sci. Technol.
8
,
199
(
1995
).
4.
J. M.
Kikkawa
and
D. D.
Awschalom
,
Nature
397
,
139
(
1999
).
5.
Y. K.
Kato
,
R. C.
Myers
,
A. C.
Gossard
, and
D. D.
Awschalom
,
Science
306
,
1910
(
2004
).
6.
I.
Crassee
,
J.
Levallois
,
A. L.
Walter
,
M.
Ostler
,
A.
Bostwick
,
E.
Rotenberg
,
T.
Seyller
,
D.
Van Der Marel
, and
A. B.
Kuzmenko
,
Nat. Phys.
7
,
48
(
2011
).
7.
C.
Chou
,
Y.-C.
Huang
,
C.-M.
Feng
, and
M.
Chang
,
Jpn. J. Appl. Phys. I
36
,
356
(
1997
).
8.
E.
Plum
,
J.
Zhou
,
J.
Dong
,
V. A.
Fedotov
,
T.
Koschny
,
C. M.
Soukoulis
, and
N. I.
Zheludev
,
Phys. Rev. B
79
,
035407
(
2009
).
9.
N.
Takeguchi
and
M.
Nakagaki
,
J. Opt. Soc. Am.
58
,
415
(
1968
).
10.
B. B.
Krichevtsov
,
V. V.
Pavlov
,
R. V.
Pisarev
, and
V. N.
Gridnev
,
Phys. Rev. Lett.
76
,
4628
(
1996
).
11.
J.
Xia
,
Y.
Maeno
,
P.
Beyersdorf
,
M.
Fejer
, and
A.
Kapitulnik
,
Phys. Rev. Lett.
97
,
167002
(
2006
).
12.
P.
Kleindienst
and
G. H.
Wagnière
,
Chem. Phys. Lett.
288
,
89
(
1998
).
13.
M.
Vallet
,
R.
Ghosh
,
A.
Le Floch
,
T.
Ruchon
,
F.
Bretenaker
, and
J. Y.
Thépot
,
Phys. Rev. Lett.
87
,
183003
(
2001
).
14.
Y.
Machida
,
S.
Nakatsuji
,
S.
Onoda
,
T.
Tayama
, and
T.
Sakakibara
,
Nature
463
,
210
(
2010
).
15.
C.
Chang
,
L.
Wang
,
J.
Shy
,
C.
Lin
, and
C.
Chou
,
Rev. Sci. Instrum.
82
,
063112
(
2011
).
16.
J.
Li
,
L.
Luo
,
J.
Carvell
,
R.
Cheng
,
T.
Lai
, and
Z.
Wang
,
J. Appl. Phys.
115
,
103101
(
2014
).
17.
J.
Xia
,
P.
Beyersdorf
,
M.
Fejer
, and
A.
Kapitulnik
,
Appl. Phys. Lett.
89
,
062508
(
2006
).
18.
P. A.
Leilabady
,
A. P.
Wayte
,
M.
Berwick
,
J. D. C.
Jones
, and
D. A.
Jackson
,
Opt. Commun.
59
,
173
(
1986
).
19.
S.
Spielman
,
K.
Fesler
,
C. B.
Eom
,
T. H.
Geballe
,
M. M.
Fejer
, and
A.
Kapitulnik
,
Phys. Rev. Lett.
65
,
123
(
1990
).
20.
A.
Kapitulnik
,
J. S.
Dodge
, and
M. M.
Fejer
,
J. Appl. Phys.
75
,
6872
(
1994
).
21.
P. T.
Beyersdorf
,
M. M.
Fejer
, and
R. L.
Byer
,
Opt. Lett.
24
,
1112
(
1999
).
22.
N. P.
Armitage
,
Phys. Rev. B
90
,
035135
(
2014
).
23.
J.
Halpern
,
B.
Lax
, and
Y.
Nishina
,
Phy. Rev.
134
,
A140
(
1964
).
24.
M.
Freiser
,
IEEE Trans. Magn.
4
,
152
(
1968
).
25.
D.
Goldstein
,
Polarized Light
, 3rd ed. (
CRC Press
,
2010
).
26.
M. C.
Teich
and
B. E. A.
Saleh
,
Quantum Opt.: J. Eur. Opt. Soc. B
1
,
153
(
1989
).
27.
A.
Fried
,
M.
Fejer
, and
A.
Kapitulnik
,
Rev. Sci. Instrum.
85
,
103707
(
2014
).
28.
J. S.
Dodge
,
L.
Klein
,
M. M.
Fejer
, and
A.
Kapitulnik
,
J. Appl. Phys.
79
,
6186
(
1996
).
29.
A.
Dandridge
,
A. B.
Tveten
, and
T. G.
Giallorenzi
,
IEEE Trans. Microwave Theory Tech.
30
,
1635
(
1982
).
30.

If ω=ωS had been chosen, the CCW beam would see a rotation given by 𝐅(ϕ0sin(ωt+π))=𝐅(ϕ0sinωt), the same as the CW beam. In effect the time dependent Faraday rotator is made to behave as a chiral object.

31.

If ω=ωS had been chosen, the CCW beam would see a rotation given by 𝐅(ϕ0sinωt+π)=𝐅(ϕ0sinωt). The LC modulator then behaves as a Faraday rotator.

You do not currently have access to this content.