A novel vapor delivery testbed, referred to as the Trace Explosives Sensor Testbed, or TESTbed, is demonstrated that is amenable to both high- and low-volatility explosives vapors including nitromethane, nitroglycerine, ethylene glycol dinitrate, triacetone triperoxide, 2,4,6-trinitrotoluene, pentaerythritol tetranitrate, and hexahydro-1,3,5-trinitro-1,3,5-triazine. The TESTbed incorporates a six-port dual-line manifold system allowing for rapid actuation between a dedicated clean air source and a trace explosives vapor source. Explosives and explosives-related vapors can be sourced through a number of means including gas cylinders, permeation tube ovens, dynamic headspace chambers, and a Pneumatically Modulated Liquid Delivery System coupled to a perfluoroalkoxy total-consumption microflow nebulizer. Key features of the TESTbed include continuous and pulseless control of trace vapor concentrations with wide dynamic range of concentration generation, six sampling ports with reproducible vapor profile outputs, limited low-volatility explosives adsorption to the manifold surface, temperature and humidity control of the vapor stream, and a graphical user interface for system operation and testing protocol implementation.

1.
R. J.
Colton
and
J. N.
Russell
,
Science
299
,
1324
(
2003
).
2.
J. W.
Grate
,
R. G.
Ewing
, and
D. A.
Atkinson
,
TrAC, Trends Anal. Chem.
41
,
1
(
2012
).
3.
G. E.
Collins
,
B. C.
Giordano
,
V.
Sivaprakasam
,
R.
Ananth
,
M.
Hammond
,
C. D.
Merritt
,
J. E.
Tucker
,
M.
Malito
,
J. D.
Eversole
, and
S.
Rose-Pehrsson
,
Rev. Sci. Instrum.
85
,
054101
(
2014
).
4.
X.
Yang
,
X.-X.
Du
,
J.
Shi
, and
B.
Swanson
,
Talanta
54
,
439
(
2001
).
5.
J. P.
Davies
,
L. G.
Blackwood
,
S. G.
Davis
,
L. D.
Goodrich
, and
R. A.
Larson
,
Anal. Chem.
65
,
3004
(
1993
).
6.
B. V.
Antohe
,
D. J.
Hayes
,
D. W.
Taylor
,
D. B.
Wallace
,
M. E.
Grove
, and
M.
Christison
, in
IEEE Conference on Technologies for Homeland Security
(
IEEE
,
2008
), Vols. 1 and 2, pp.
384
389
.
7.
C. R.
Field
,
C. R.
Tamanaha
,
M.
Woytowitz
, and
S. L.
Rose-Pehrsson
,
Meas. Sci. Technol.
25
,
065901
(
2014
).
8.
A. L.
Lubrano
,
C. R.
Field
,
A. G.
Newsome
,
D. A.
Rogers
,
B. C.
Giordano
, and
K. J.
Johnson
,
J. Chromatogr. A
1394
,
154
(
2015
).
9.
C.
Field
,
A. V.
Terray
,
S. J.
Hart
,
D. A.
Rogers
,
A.
Lubrano
, and
M. P.
Malito
, U.S. patent application US20140001280A1 (15 June
2013
).
10.
B. C.
Giordano
,
C. R.
Field
,
B.
Andrews
,
A.
Lubrano
,
M.
Woytowitz
,
D.
Rogers
, and
G. E.
Collins
,
Anal. Chem.
88
,
3747
(
2016
).
11.
F. L.
Steinkamp
,
B.
Giordano
,
G.
Collins
, and
S.
Rose-Pehrsson
,
Propellants, Explos., Pyrotech.
40
,
682
(
2015
).
12.
L. E.
DeGreeff
,
D.
Rogers
,
C. J.
Katilie
,
K. J.
Johnson
, and
S. L.
Rose-Pehrsson
,
Forensic Sci. Int.
248
,
55
(
2014
).
13.
B. C.
Giordano
,
A. L.
Lubrano
,
C. R.
Field
, and
G. E.
Collins
,
J. Chromatogr. A
1331
,
38
(
2014
).
14.
C. R.
Field
,
B. C.
Giordano
,
D. A.
Rogers
,
A. L.
Lubrano
, and
S. L.
Rose-Pehrsson
,
J. Chromatogr. A
1227
,
10
(
2012
).
15.
C. R.
Field
,
A. L.
Lubrano
,
D. A.
Rogers
,
B. C.
Giordano
, and
G. E.
Collins
,
J. Chromatogr. A
1282
,
178
(
2013
).
16.
R. G.
Ewing
,
M. J.
Waltman
,
D. A.
Atkinson
,
J. W.
Grate
, and
P. J.
Hotchkiss
,
TrAC, Trends Anal. Chem.
42
,
35
(
2013
).
You do not currently have access to this content.