Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μm for the fictitious droplets of 50 μm in diameter and −1.2 ± 0.3 μm for the fictitious droplets of 30 μm in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μm. When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μm at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

1.
H.-S.
Koo
,
P.-C.
Pan
,
T.
Kawai
,
M.
Chen
,
F.-M.
Wu
,
Y.-T.
Liu
, and
S.-J.
Chang
, “
Physical chromaticity of colorant resist of color filter prepared by inkjet printing technology
,”
Appl. Phys. Lett.
88
(
11
),
111908
(
2006
).
2.
H.-S.
Koo
,
M.
Chen
, and
P.-C.
Pan
, “
LCD-based color filter films fabricated by a pigment-based colorant photo resist inks and printing technology
,”
Thin Solid Films
515
(
3
),
896
901
(
2006
).
3.
C.-T.
Chen
,
K.-H.
Wu
,
C.-F.
Lu
, and
F.
Shieh
, “
An inkjet printed strip-type color filter of liquid crystal display
,”
J. Micromech. Microeng.
20
(
5
),
055004
(
2010
).
4.
K.
Hiruma
,
K.
Suzuki
,
O.
Kasuga
,
A.
Ito
,
Y.
Iwai
,
H.
Aruga
,
M.
Yazaki
,
A.
Hashizume
,
T.
Okusa
,
H.
Nagasawa
,
M.
Nagasaka
, and
T.
Usui
, “
Ink jet fabrication of alignment layers on high-temperature polysilicon liquid crystal panels
,”
Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp.
37
(
1
),
1583
1586
(
2006
).
5.
K.-C.
Fan
,
J.-Y.
Chen
,
C.-H.
Wang
, and
W.-C.
Pan
, “
Development of a drop-on-demand droplet generator for one-drop-fill technology
,”
Sens. Actuators, A
147
(
2
),
649
655
(
2008
).
6.
S.-C.
Chang
,
J.
Liu
,
J.
Bharathan
,
Y.
Yang
,
J.
Onohara
, and
J.
Kido
, “
Multicolor organic light-emitting diodes processed by hybrid inkjet printing
,”
Adv. Mater.
11
(
9
),
734
737
(
1999
).
7.
B.
Geffroy
,
P.
le Roy
, and
C.
Prat
, “
Organic light-emitting diode (OLED) technology: Materials, devices and display technologies
,”
Polym. Int.
55
(
6
),
572
582
(
2006
).
8.
F.
Villani
,
P.
Vacca
,
G.
Nenna
,
O.
Valentino
,
G.
Burrasca
,
T.
Fasolino
,
C.
Minarini
, and
D.
della Sala
, “
Inkjet printed polymer layer on flexible substrates for OLED applications
,”
J. Phys. Chem. C
113
(
30
),
13398
13402
(
2009
).
9.
L. T.
Creagh
and
M.
McDonald
, “
Design and performance of inkjet print heads for non-graphic-arts applications
,”
MRS Bull.
28
(
11
),
807
811
(
2003
).
10.
S.
Takei
,
A.
Kitabayashi
,
H.
Hanaoka
,
K.
Shinohara
,
M.
Goto
,
T.
Nozawa
,
T.
Kubota
,
T.
Kasai
,
S.
Sakai
, and
S.
Miyashita
, “
Fabrication of completely uniform OLED display using an improved inkjet method
,”
Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp.
40
(
1
),
1351
1354
(
2009
).
11.
S.
Poozesh
,
N.
Akafuah
, and
K.
Saito
, “
New criteria for filament breakup in droplet-on-demand inkjet printing using volume of fluid (VOF) method
,”
Korean J. Chem. Eng.
33
(
3
),
775
791
(
2016
).
12.
S.
Poozesh
,
K.
Saito
,
N. K.
Akafuah
, and
J.
Graña-Otero
, “
Comprehensive examination of a new mechanism to produce small droplets in drop-on-demand inkjet technology
,”
Appl. Phys. A
122
(
2
),
1
12
(
2016
).
13.
D.-Y.
Shin
and
P. J.
Smith
, “
Theoretical investigation of the influence of nozzle diameter variation on the fabrication of thin film transistor liquid crystal display color filters
,”
J. Appl. Phys.
103
,
114905
(
2008
).
14.
C. F.
Madigan
,
C. R.
Hauf
,
L. D.
Barkley
,
N.
Harjee
,
E.
Vronsky
, and
S. A.
Van Slyke
, “
Advancements in inkjet printing for OLED mass production
,”
Dig. Tech. Pap. - Soc. Inf. Disp. Int. Symp.
45
(
1
),
399
402
(
2014
).
15.
H.
Dong
,
W. W.
Carr
, and
J. F.
Morris
, “
Visualization of drop-on-demand inkjet: Drop formation and deposition
,”
Rev. Sci. Instrum.
77
,
085101
(
2006
).
16.
I. M.
Hutchings
,
G. D.
Martin
, and
S. D.
Hoath
, “
High speed imaging and analysis of jet and drop formation
,”
J. Imaging Sci. Technol.
51
(
5
),
438
444
(
2007
).
17.
K.-C.
Fan
,
J.-Y.
Chen
,
C.-H.
Wang
, and
W.-C.
Pan
, “
Precision in situ volume measurement of micro droplets
,”
J. Opt. A: Pure Appl. Opt.
11
(
1
),
015503
(
2008
).
18.
A.
van der Bos
,
M.-J.
van der Meulen
,
T.
Driessen
,
M.
van den Berg
,
H.
Reinten
,
H.
Wijshoff
,
M.
Versluis
, and
D.
Lohse
, “
Velocity profile inside piezoacoustic inkjet droplets in Flight: Comparison between experiment and numerical simulation
,”
Phys. Rev. Appl.
1
,
014004
(
2014
).
19.
K.-S.
Kwon
,
M.-H.
Jang
,
H. Y.
Park
, and
H.-S.
Ko
, “
An inkjet vision measurement technique for high-frequency jetting
,”
Rev. Sci. Instrum.
85
,
065101
(
2014
).
20.
K.-S.
Kwon
,
H.-S.
Kim
, and
M.
Choi
, “
Measurement of inkjet first-drop behavior using a high-speed camera
,”
Rev. Sci. Instrum.
87
,
035101
(
2016
).
21.
S. D.
Hoath
, in
NIP31: The 31st International Conference on Digital Printing Technologies and Digital Fabrication, September 2015, Portland, USA
(
Society for Imaging Science and Technology (IS&T)
,
2015
), pp.
8
12
, (https://www.imaging.org/site/ist).
22.
T.
Yoshizawa
,
Handbook of Optical Metrology: Principles and Applications
(
CRC Press
,
New York
,
2009
).
23.
K.-S.
Kwon
,
D.
Zhang
, and
H.-S.
Go
, “
Jetting frequency and evaporation effects on the measurement accuracy of inkjet droplet amount
,”
J. Imaging Sci. Technol.
59
(
2
),
020401
(
2015
).
24.
G. D.
Martin
,
J. R.
Castrejón-Pita
, and
I. M.
Hutchings
, in
NIP27: International Conference on Digital Printing Technologies and Digital Fabrication, October 2011, Minneapolis, USA
(
Society for Imaging Science and Technology (IS&T)
,
2011
), pp.
620
623
, (https://www.imaging.org/site/ist).
25.
R. M.
Verkouteren
and
J. R.
Verkouteren
, “
Inkjet metrology: High-accuracy mass measurements of microdroplets produced by a drop-on-demand dispenser
,”
Anal. Chem.
81
,
8577
8584
(
2009
).
26.
W.
Shin
,
M.
Nishibori
,
T.
Itoh
,
N.
Izu
, and
I.
Matsubara
, “
Monitoring of dispensed fluid with the quartz crystal microbalance (QCM) for the better control of inkjet or dispenser machine
,”
J. Ceram. Soc. Jpn.
116
(
1351
),
459
461
(
2008
).
27.
I.
Reinhold
,
V.
Mecea
,
L.
Armbrecht
,
W.
Voit
,
M.
Müller
,
W.
Zapka
, and
R. R.
Baumann
, “
Measurement of mass of single inkjet drops with a quartz crystal microbalance QCM
,” in
NIP28: International Conference on Digital Printing Technologies and Digital Fabrication, September 2012, Quebec, Canada
(
Society for Imaging Science and Technology (IS&T)
,
2012
), pp.
312
314
, (https://www.imaging.org/site/ist).
28.
Y.
Fuchiwaki
,
Y.
Yabe
,
Y.
Adchi
,
M.
Tanaka
,
K.
Abe
,
M.
Kataoka
, and
T.
Ooie
, “
Inkjet monitoring technique with quartz crystal microbalance (QCM) sensor for highly reproducible antibody immobilization
,”
Sens. Actuators, A
219
,
1
5
(
2014
).
29.
J. R.
Castrejón-Pita
,
K. J.
Kubiak
,
A. A.
Castrejón-Pita
,
M. C. T.
Wilson
, and
I. M.
Hutchings
, “
Mixing and internal dynamics of droplets impacting and coalescing on a solid surface
,”
Phys. Rev. E
88
(
2
),
023023
(
2013
).
30.
J.
Seymour
, in
Proceedings of the Technical Association of the Graphic Arts, TAGA, Proceedings of the 61st Annual Meeting, March 2009, New Orleans, USA
(
Technical Association of the Graphic Arts
,
2009
), pp.
79
105
, (http://www.printing.org/page/3771).
31.
K. A.
Brakke
, “
The surface evolver
,”
Exp. Math.
1
(
2
),
141
165
(
1992
).
You do not currently have access to this content.