A low-energy low-dose γ-ray computed tomography (CT) system used in the gas-liquid two-phase pipe flow measurement has been studied at Tianjin University in recent years. The γ-ray CT system, having a third-generation X-ray CT scanning configuration, is comprised of one 300mCi 241Am source and 17 CdZnTe detector units and achieves a spatial image resolution of about 7 mm. It is primarily intended to measure the two-phase pipe flow and provide improvement suggestions for industrial CT system. Recently we improve the design for image reconstruction from incomplete projection to optimize the scanning parameters and reduce the radiation dose. First, tomographic problem from incomplete projections is briefly described. Next, a system structure and a hardware circuit design are listed and explained, especially on time parameter setting of the pulse shaper. And then a detailed system analysis is provided in Section II, mainly focusing on spatial resolution, temporal resolution, system noise, and imaging algorithm. Finally, we carry on necessary static and dynamic experiments in a full scan (360°) and two sets of partial scan reconstruction tests to determine the feasibility of this γ-ray CT system for reconstructing the images from insufficient projections. And based on an A-variable algebraic reconstruction technique method, a specially designed algorithm, we evaluate the system performance and noise level of this CT system working quantitatively and qualitatively. Results of dynamic test indicate that the acceptable results can be acquired using a multi-source γ-ray CT system with the same parameters when the flow rate is less than 0.04 m/s and the imaging speed is slower than 33 frames/s.

1.
G. A.
Johansen
,
T.
Fr
ystein
ø,
B. T.
Hjertaker
, and
Ø.
Olsen
,
Meas. Sci. Technol.
7
,
297
(
1996
).
2.
B. T.
Hjertaker
,
R.
Maad
,
E.
Schuster
,
O. A.
Almås
, and
G. A.
Johansen
,
Meas. Sci. Technol.
19
,
44
(
2008
).
3.
L.
Ritschl
,
F.
Bergner
,
C.
Fleischmann
, and
M.
Kachelriess
,
Phys. Med. Biol.
56
,
1545
(
2011
).
4.
Y.
Wang
and
W.
Yin
,
SIAM J. Imaging Sci.
3
,
462
(
2010
).
5.
B. E.
Oppenheim
,
Workshop on Reconstruction Tomography in Diagnostic Radiology in Nuclear Medicine
(
San Juan
,
Puerto Rico
,
1975
).
6.
T.
Inouye
,
IEEE Trans. Nucl. Sci.
26
,
2665
(
1979
).
7.
K. M.
Hanson
and
G. W.
Wecksung
,
J. Opt. Soc. Am.
73
(
11
),
1501
(
1983
).
8.
E.Y.
Sidky
,
Y.
Duchin
, and
X.
Pan
,
Med. Phys.
38
,
117
(
2011
).
9.
H.
Yu
and
G.
Wang
,
Phys. Med. Biol.
55
(
13
),
3905
(
2010
).
10.
Y.
Wei
and
Z.
Li
,
PLoS One
9
(
10
),
109345
(
2014
).
11.
S.
Xin
,
H. X.
Wang
, and
K. H.
Hao
, in
2010 IEEE Instrumentation & Measurement Technology Conference (I2MTC 2010)
(
IEEE
,
2010
), Issue 3-6, pp.
264
267
.
12.
P.
Grybos
, in
IEEE NSS-MIC 2006 Conference Record
(
IEEE
,
2006
), pp.
226
230
.
13.
G. B.
Saha
,
Characteristics of Specific Radiopharmaceuticals
(
Springer
,
2003
), pp.
302
336
.
14.
R.
Pelberg
,
Cardiac CT Angiography Manual
(
Springer
,
London
,
2015
), Vol. 5, pp.
34
37
.
15.
L. W.
Goldman
,
J. Nucl. Med. Technol.
35
,
115
128
(
2007
).
16.
G. A.
Johansen
,
T.
Frøystein
,
B. T.
Hjertaker
 et al,
Chem. Eng. J. Biochem. Eng. J.
56
(
3
),
175
182
(
1995
).
17.
T. M.
Buzug
,
Computed tomography: From photon statistics to modern cone-beam CT
(
Springer
,
London
,
2008
), pp.
462
463
.
18.
B. R.
Whiting
,
Proc. SPIE 4682, Medical Imaging 2002: Physics of Medical Imaging
53
, (
2002
).
19.
K.
Sauer
and
C.
Bouman
,
IEEE Trans. Signal Process.
155
(
2
),
534
548
(
2010
).
20.
M.
Beister
,
D.
Kolditz
, and
W. A.
Kalender
,
Phys. Med.
28
(
2
),
94
108
(
2012
).
21.
W. Q.
Yang
,
D. M.
Spink
,
T. A.
York
, and
H.
McCann
,
Meas. Sci. Technol.
10
,
1065
1069
(
1999
).
22.
Y.
Yuan
,
Math. Program.
87
,
561
573
(
2000
).
23.
G. T.
Herman
,
A.
Lent
, and
S. W.
Rowland
,
J. Theor. Biol.
42
,
1
32
(
1973
).
24.
J.
Lucaya
,
J.
Piqueras
, and
P.
García-Peña
,
Am. J. Roentgenol.
175
(
4
),
985
992
(
2000
).
25.
P.
Santago
and
H. D.
Gage
,
IEEE Trans. Image Process.
4
(
11
),
1531
1539
(
1995
).
You do not currently have access to this content.