Accurate reconstruction of the surface roughness is of high importance to various areas of science and engineering. One important application of this technology is for remote monitoring of open channel flows through observing its dynamic surface roughness. In this paper a novel airborne acoustic method of roughness reconstruction is proposed and tested with a static rigid rough surface. This method is based on the acoustic holography principle and Kirchhoff approximation which make use of acoustic pressure data collected at multiple receiver points spread along an arch. The Tikhonov regularisation and generalised cross validation technique are used to solve the underdetermined system of equations for the acoustic pressures. The experimental data are collected above a roughness created with a 3D printer. For the given surface, it is shown that the proposed method works well with the various number of receiver positions. In this paper, the tested ratios between the number of surface points at which the surface elevation can be reconstructed and number of receiver positions are 2.5, 5, and 7.5. It is shown that, in a region comparable with the projected size of the main directivity lobe, the method is able to reconstruct the spatial spectrum density of the actual surface elevation with the accuracy of 20%.

1.
A.
Krynkin
,
K. V.
Horoshenkov
,
A.
Nichols
, and
S. J.
Tait
,
Rev. Sci. Instrum.
85
,
114902
(
2014
).
2.
A.
Nichols
,
S. J.
Tait
,
K. V.
Horoshenkov
, and
S. J.
Shepherd
,
J. Hydraul. Res.
54
,
516
526
(
2016
).
3.
G.
Dolcetti
,
K. V.
Horoshenkov
,
A.
Krynkin
, and
S. J.
Tait
,
Phys. Fluids
28
,
105105
(
2016
).
4.
A.
Nichols
,
S. J.
Tait
,
K. V.
Horoshenkov
, and
S. J.
Shepherd
,
Flow Meas. Instrum.
34
,
118
126
(
2013
).
5.
R. J.
Wombell
and
J. A.
DeSanto
, “
The reconstruction of shallow rough-surface profiles from scattered field data
,”
Inverse Probl.
7
,
7
12
(
1991
).
6.
E. I.
Thorsos
,
J. Acoust. Soc. Am.
83
,
78
(
1988
).
7.
C. J. R.
Sheppard
,
Waves Random Media
8
,
53
(
1998
).
8.
A.
Schuhmacher
,
J.
Hald
,
K. B.
Rasmussen
, and
P. C.
Hansen
,
J. Acoust. Soc. Am.
113
,
114
(
2003
).
9.
N.
Totaro
,
D.
Vigoureux
,
Q.
Leclére
,
J.
Lagneaux
, and
J. L.
Guyader
,
J. Sound Vib.
336
,
62
(
2015
).
10.
J. D.
Maynard
,
E. G.
Williams
, and
Y.
Lee
,
J. Acoust. Soc. Am.
78
,
1395
(
1985
).
11.
E. G.
Williams
and
B. H.
Houston
,
J. Acoust. Soc. Am.
114
,
1322
(
2003
).
12.
P. A.
Nelson
and
S. H.
Yoon
,
J. Sound Vib.
233
,
643
(
2000
).
13.
Q.
Leclére
,
J. Sound Vib.
321
,
605
(
2009
).
14.
P. M.
Morse
and
K.
Uno Ingard
,
Theoretical Acoustics
(
McGraw-Hill
,
New York
,
1968
), p.
381
.
15.
J. V.
Toporkov
and
G. S.
Brown
,
IEEE Trans. Geosci. Remote Sens.
38
,
4
(
2000
).
16.
O. M.
Phillips
,
J. Fluid Mech.
4
,
426
(
1958
).
17.
V. E.
Zakharov
and
N. N.
Filonenko
,
J. Appl. Mech. Tech. Phys.
8
,
37
(
1967
).
18.
V.
Borue
,
S. A.
Orszag
, and
I.
Staroselsky
,
J. Fluid Mech.
286
,
1
(
1995
).
19.
M.
Brocchini
and
D. H.
Peregrine
,
J. Fluid Mech.
449
,
225
(
2001
).
20.
K. V.
Horoshenkov
,
A.
Nichols
,
S. J.
Tait
, and
G. A.
Maximov
,
J. Geophys. Res.: Earth Surf.
118
,
1864
, doi:10.1002/jgrf.20117 (
2013
).
21.
F. G.
Bass
and
I. M.
Fuks
,
Wave Scattering from Statistically Rough Surfaces
(
Pergamon
,
Oxford
,
1979
), p.
186
.
22.
See http://uk.mathworks.com/help/matlab/ref/svd.html for information about the singular value decomposition algorithm in MATLAB, accessed on 25 May 2016.
23.
A.
Ishimaru
,
Wave Propagation and Scattering in Random Media
(
Academic Press
,
New York
,
1978
), p.
504
.
You do not currently have access to this content.