Ultrafast photoelectron and photoion spectroscopy (as well as their combination known as “coincidence spectroscopy”) utilizes detectors based on different electron multipliers such as microchannel plates or single-channel electron multipliers. These detectors have a few important limitations such as fast-signal distortion (low pass operation), mutually exclusive positive or negative mode, dead time, and requirement of trigger. A high-pass induction detector, based on a hollow-cored toroidal coil, was developed that overcomes the above-mentioned limitations. The frequency-dispersive response and linearity of different configurations were analyzed. It is shown that the response is enhanced for ultrafast electron signals, dependent on construction parameters, thus offering response flexibility by design. Kinetic energy distributions of pseudospark-induced electron pulses are characterized in order to validate the capabilities in real applications.

1.
L. N.
Glandorf
,
M.
Scheer
,
D. A.
Samuels
,
A. M.
Mulhisen
,
E. R.
Grant
,
X.
Yang
,
V. M.
Bierbaum
, and
S. R.
Leone
,
Phys. Rev. Lett.
87
,
193002
(
2001
).
2.
L.
Armelao
,
D.
Bleiner
,
V.
Di Noto
,
S.
Gross
,
C.
Sada
,
U.
Schubert
,
E.
Tondello
,
H.
Vonmont
, and
A.
Zattin
,
Appl. Surf. Sci.
249
,
277
294
(
2005
).
3.
D.
Bleiner
,
P.
Lienemann
, and
H.
Vonmont
,
Talanta
65
,
1286
1294
(
2005
).
4.
D.
Bleiner
,
P.
Lienemann
,
A.
Ulrich
,
H.
Vonmont
, and
A.
Wichser
,
J. Anal. At. Spectrom.
18
,
1146
1153
(
2003
).
5.
L. N.
Glandorf
, “
Time resolved photoelectron spectroscopy with ultrafast soft x-ray light
,” Ph.D. thesis,
University of Colorado
,
2001
.
6.
G. A.
Garcia
,
H.
Soldi-Lose
and
L.
Nahon
,
Rev. Sci. Instrum.
80
,
023102
(
2009
).
7.
N.
Kamakura
,
Y.
Takata
,
T.
Tokushima
,
Y.
Harada
,
A.
Chainani
,
K.
Kobayashi
, and
S.
Shin
,
Phys. Rev. B
74
,
045127
(
2006
).
8.
Photonis, “
Gen2 ultrafast tof detector
,”www.photonis.com,
2015
.
9.
M. J.
Kristo
and
C. G.
Enke
,
Channeltron Electron Multiplier Handbook for Mass Spectrometry Applications
(
Galileo Electro-Optics Corporation
,
Sturbridge
,
1991
).
10.
J. L.
Wiza
,
Nucl. Instrum. Methods
162
,
587
601
(
1979
).
11.
J.
Gierak
 et al.,
Microelectron. Eng.
57
,
865
875
(
2001
).
12.
A.
Gaucher
,
E.
Martinez
,
J.
Baylet
, and
C.
Cardinaud
,
J. Electron. Mater.
43
,
1255
62
(
2014
).
13.
T.
Gießel
,
D.
Bröcker
,
P.
Schmidt
, and
W.
Widdra
,
Rev. Sci. Instrum.
74
,
4620
4624
(
2003
).
14.
T.
Kawauchi
,
M.
Matsumoto
,
K.
Fukutani
,
T.
Okano
,
S.
Kishimoto
,
X.
Zhang
, and
Y.
Yoda
,
Rev. Sci. Instrum.
78
,
013303
(
2007
).
15.
Y.
Arbelo
,
F.
Barbato
, and
D.
Bleiner
, “
He-doped pseudospark as a home-lab xuv source beyond the beamtime bottleneck
,”
Plasma Sources Sci. Technol.
(published online).
16.
M.
Argueso
,
G.
Robles
, and
J.
Sanz
,
Rev. Sci. Instrum.
76
,
065107
(
2005
).
17.
L.
Rong
,
L.
Ji-sheng
and
F.
Yang-yu
,
Prz. Elektrotechniczny
89
,
115
119
(
2013
).
18.
W.
Chen
,
C.
Yao
,
P.
Chen
,
C.
Sun
,
L.
Du
, and
R.
Liao
,
IEEE Trans. Power Delivery
23
,
355
360
(
2008
).
19.
K.
Bergmann
,
G.
Schriever
,
O.
Rosier
,
M.
Muller
,
W.
Neff
, and
R.
Lebert
,
Appl. Opt.
38
,
5413
5417
(
1999
).
20.
K.
Bergmann
,
F.
Küpper
, and
M.
Benk
,
J. Appl. Phys.
103
,
123304
(
2008
).
21.
J.
Hu
and
J. L.
Rovey
, “
Experimental investigations of high voltage pulsed pseudospark discharge and intense electron beams
,” in
50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
(
American Institute of Aeronautics and Astronautics
,
2012
), pp.
1
12
.
You do not currently have access to this content.