We report a photoluminescence imaging system for locating single quantum emitters with respect to alignment features. Samples are interrogated in a 4 K closed-cycle cryostat by a high numerical aperture (NA = 0.9, 100× magnification) objective that sits within the cryostat, enabling high efficiency collection of emitted photons without image distortions due to the cryostat windows. The locations of single InAs/GaAs quantum dots within a >50μm × 50 μm field of view are determined with 4.5 nm uncertainty (one standard deviation) in a 1 s long acquisition. The uncertainty is determined through a combination of a maximum likelihood estimate for localizing the quantum dot emission, and a cross correlation method for determining the alignment mark center. This location technique can be an important step in the high-throughput creation of nanophotonic devices that rely upon the interaction of highly confined optical modes with single quantum emitters.

1.
M. H.
Baier
,
S.
Watanabe
,
E.
Pelucchi
, and
E.
Kapon
,
Appl. Phys. Lett.
84
,
1943
(
2004
).
2.
C.
Schneider
 et al,
Appl. Phys. Lett.
94
,
111111
(
2009
).
3.
D. M.
Toyli
,
C. D.
Weis
,
G. D.
Fuchs
,
T.
Schenkel
, and
D.D.
Awschalom
,
Nano Lett.
10
,
3168
(
2010
).
4.
J. Y.
Marzin
,
J. M.
Gerard
,
A.
Izrael
,
D.
Barrier
, and
G.
Bastard
,
Phys. Rev. Lett.
73
,
716
(
1994
).
5.
P. M.
Petroff
,
A.
Lorke
, and
A.
Imamoglu
,
Phys. Today
54
(
5
),
46
(
2001
).
6.
A. V.
Kuhlmann
 et al,
Nat. Commun.
6
,
8204
(
2015
).
7.
X.
Ding
 et al,
Phys. Rev. Lett.
116
,
020401
(
2016
).
8.
N.
Somaschi
 et al,
Nat. Photonics
10
,
340
(
2016
).
9.
P.
Lodahl
,
S.
Mahmoodian
, and
S.
Stobbe
,
Rev. Mod. Phys.
87
,
347
(
2015
).
10.
K.
Hennessy
 et al,
Nature
445
,
896
(
2007
).
11.
K. H.
Lee
 et al,
Appl. Phys. Lett.
88
,
193106
(
2006
).
12.
A.
Dousse
 et al,
Phys. Rev. Lett.
101
,
267404
(
2008
).
13.
S. M.
Thon
 et al,
Appl. Phys. Lett.
94
,
111115
(
2009
).
14.
A.
Badolato
 et al,
Science
308
,
1158
(
2005
).
15.
K.
Kuruma
 et al,
Appl. Phys. Lett.
109
,
071110
(
2016
).
16.
M.
Gschrey
 et al,
Nat. Commun.
6
,
7662
(
2015
).
17.
T.
Kojima
,
K.
Kojima
,
T.
Asano
, and
S.
Noda
,
Appl. Phys. Lett.
102
,
011110
(
2013
).
18.
L.
Sapienza
,
M.
Davanço
,
A.
Badolato
, and
K.
Srinivasan
,
Nat. Commun.
6
,
7833
(
2015
).
19.
K. I.
Mortensen
,
L. S.
Churchman
,
J. A.
Spudich
, and
H.
Flyvbjerg
,
Nat. Methods
7
,
377
(
2010
).
20.
E. H.
Anderson
,
D.
Ha
, and
J. A.
Liddle
,
Microelectron. Eng.
73-74
,
74
(
2004
).
21.
A. V.
Kuhlmann
 et al,
Rev. Sci. Instrum.
84
,
073905
(
2013
).
22.
R. E.
Thompson
,
D. R.
Larson
, and
W. W.
Webb
,
Biophys. J.
82
,
2775
(
2002
).
23.
C. S.
Smith
,
N.
Joseph
,
B.
Rieger
, and
K. A.
Lidke
,
Nat. Methods
7
,
373
870
(
2010
).
24.
M.
Hirsch
,
R. J.
Wareham
,
M. L.
Martin-Fernandez
,
M. P.
Hobson
, and
D. J.
Rolfe
,
PLoS One
8
,
e53671
(
2013
).
25.
C. P.
Dietrich
,
A.
Fiore
,
M. G.
Thompson
,
M.
Kamp
, and
S.
Höfling
,
Laser Photonics Rev.
10
,
870
(
2016
).
26.
S.
Castelletto
 et al,
Nat. Mater.
13
,
151
(
2013
).
27.
V.
Perebeinos
,
Nat. Nanotechnol.
10
,
485
(
2015
).
You do not currently have access to this content.