We demonstrate a capability of deterministic doping at the single atom level using a combination of direct write focused ion beam and solid-state ion detectors. The focused ion beam system can position a single ion to within 35 nm of a targeted location and the detection system is sensitive to single low energy heavy ions. This platform can be used to deterministically fabricate single atom devices in materials where the nanostructure and ion detectors can be integrated, including donor-based qubits in Si and color centers in diamond.

1.
B. E.
Kane
, “
A silicon-based nuclear spin quantum computer
,”
Nature
393
(
6681
),
133
137
(
1998
).
2.
L. C. L.
Hollenberg
 et al, “
Charge-based quantum computing using single donors in semiconductors
,”
Phys. Rev. B
69
(
11
),
113301
(
2004
).
3.
A.
Morello
 et al, “
Single-shot readout of an electron spin in silicon
,”
Nature
467
(
7316
),
687
691
(
2010
).
4.
A. M.
Tyryshkin
 et al, “
Electron spin relaxation times of phosphorus donors in silicon
,”
Phys. Rev. B
68
(
19
),
193207
(
2003
).
5.
R.
Kalra
 et al, “
Robust two-qubit gates for donors in silicon controlled by hyperfine interactions
,”
Phys. Rev. X
4
(
2
),
021044
(
2014
).
6.
J. J.
Pla
 et al, “
High-fidelity readout and control of a nuclear spin qubit in silicon
,”
Nature
496
(
7445
),
334
338
(
2013
).
7.
R.
Ruskov
and
C.
Tahan
, “
On-chip quantum phonodynamics
,” e-print http://arXiv:org/abs/1208.1776 (
2012
).
8.
F.
Shi
 et al, “
Single-protein spin resonance spectroscopy under ambient conditions
,”
Science
347
(
6226
),
1135
1138
(
2015
).
9.
B.
Shields
 et al, “
Efficient readout of a single spin state in diamond via spin-to-charge conversion
,”
Phys. Rev. Lett.
114
(
13
),
136402
(
2015
).
10.
D.
Englund
 et al, “
Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity
,”
Nano Lett.
10
(
10
),
3922
3926
(
2010
).
11.
H.
McKay
 et al, “
Focused ion beam modification of surfaces for directed self-assembly of InAs/GaAs (001) quantum dots
,”
Nanotechnology
18
(
45
),
455303
(
2007
).
12.
A.
Badolato
 et al, “
Deterministic coupling of single quantum dots to single nanocavity modes
,”
Science
308
(
5725
),
1158
1161
(
2005
).
13.
D. N.
Jamieson
 et al, “
Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions
,”
Appl. Phys. Lett.
86
(
20
),
202101
(
2005
).
14.
J. C.
McCallum
 et al, “
Single-ion implantation for the development of Si-based MOSFET devices with quantum functionalities
,”
Adv. Mater. Sci. Eng.
2012
,
10
.
15.
J.
van Donkelaar
 et al, “
Single atom devices by ion implantation
,”
J. Phys.: Condens. Matter
27
(
15
),
154204
(
2015
).
16.
C.
Weis
 et al, “
Mapping of ion beam induced current changes in FinFETs
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
267
(
8
),
1222
1225
(
2009
).
17.
B. C.
Johnson
 et al, “
Drain current modulation in a nanoscale field-effect-transistor channel by single dopant implantation
,”
Appl. Phys. Lett.
96
(
26
),
264102
(
2010
).
18.
T.
Shinada
 et al, “
Influence of secondary electron detection efficiency on controllability of dopant ion number in single ion implantation
,”
Jpn. J. Appl. Phys., Part 1
38
(
6A
),
3419
(
1999
).
19.
P.
Olivero
 et al, “
Focused ion beam fabrication and IBIC characterization of a diamond detector with buried electrodes
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
269
(
20
),
2340
2344
(
2011
).
20.
K.
Nishida
,
K.
Taguchi
, and
Y.
Matsumoto
, “
InGaAsP heterostructure avalanche photodiodes with high avalanche gain
,”
Appl. Phys. Lett.
35
(
3
),
251
253
(
1979
).
21.
M.
Singh
 et al, “
Electrostatically defined silicon quantum dots with counted antimony donor implants
,”
Appl. Phys. Lett.
108
(
6
),
062101
(
2016
).
22.
K. M.
Itoh
, “
An all-silicon linear chain NMR quantum computer
,”
Solid State Commun.
133
(
11
),
747
752
(
2005
).
23.
J. F.
Ziegler
,
M. D.
Ziegler
, and
J. P.
Biersack
, “
SRIM—The stopping and range of ions in matter
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
268
(
11-12
),
1818
1823
(
2010
).
24.
J. A.
Seamons
 et al, “
Room temperature single ion detection with Geiger mode avalanche diode detectors
,”
Appl. Phys. Lett.
93
(
4
),
043124
(
2008
).
25.
M.
Kastner
, “
The single electron transistor and artificial atoms
,”
Ann. Phys.
9
(
11-12
),
885
(
2000
).
26.
E.
Bielejec
,
J.
Seamons
, and
M.
Carroll
, “
Single ion implantation for single donor devices using Geiger mode detectors
,”
Nanotechnology
21
(
8
),
085201
(
2010
).
27.
M.
Breese
 et al, “
A review of ion beam induced charge microscopy
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
264
(
2
),
345
360
(
2007
).
28.
G. F.
Knoll
,
Radiation Detection and Measurement
(
John Wiley & Sons
,
2010
).
29.
Multiple Peak Fit routine, Origin,
OriginLab
,
Northampton, MA
.
30.
A.
Persaud
 et al, “
Integration of scanning probes and ion beams
,”
Nano Lett.
5
(
6
),
1087
1091
(
2005
).
31.
T.
Shinada
 et al, “
Enhancing semiconductor device performance using ordered dopant arrays
,”
Nature
437
(
7062
),
1128
1131
(
2005
).
32.
T.
Shinada
 et al, “
Improvement of focused ion-beam optics in single-ion implantation for higher aiming precision of one-by-one doping of impurity atoms into nano-scale semiconductor devices
,”
Jpn. J. Appl. Phys., Part 2
41
(
3A
),
L287
(
2002
).
33.
H. O.
Funsten
 et al, “
Response of 100% internal carrier collection efficiency silicon photodiodes to low-energy ions
,”
IEEE Trans. Nucl. Sci.
48
(
6
),
1785
1789
(
2001
).
34.
T.
Hopf
 et al, “
The response of silicon detectors to low-energy ion implantation
,”
J. Phys.: Condens. Matter
20
(
41
),
415205
(
2008
).
35.
A.
Saraiva
 et al, “
Theory of one and two donors in silicon
,”
J. Phys.: Condens. Matter
27
(
15
),
154208
(
2015
).
36.
R.
Rahman
 et al, “
Coherent electron transport by adiabatic passage in an imperfect donor chain
,”
Phys. Rev. B
82
(
15
),
155315
(
2010
).
37.
J. A.
Van Donkelaar
, “
Strategies for triple-donor devices fabricated by ion implantation
,” preprint arXiv:0806.2691 (
2008
).
38.
A. J.
Skinner
,
M. E.
Davenport
, and
B. E.
Kane
, “
Hydrogenic spin quantum computing in silicon: A digital approach
,”
Phys. Rev. Lett.
90
(
8
),
087901
(
2003
).
39.
T. D.
Wickens
,
Elementary Signal Detection Theory
(
Oxford University Press
,
New York
,
2002
).
40.
R.
Ruskov
and
C.
Tahan
, “
On-chip cavity quantum phonodynamics with an acceptor qubit in silicon
,”
Phys. Rev. B
88
(
6
),
064308
(
2013
).
41.
J.
Riedrich-Möller
 et al, “
Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond
,”
Nano Lett.
14
(
9
),
5281
5287
(
2014
).
42.
M.
Gherasimova
 et al, “
Pattern level assembly of Ge quantum dots on Si with focused ion beam templating
,”
Appl. Phys. Lett.
93
(
2
),
023106
(
2008
).
43.
H.
Nie
 et al, “
Resonant-cavity separate absorption, charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product
,”
IEEE Photonics Technol. Lett.
10
(
3
),
409
411
(
1998
).
You do not currently have access to this content.