A novel development is made here by inventing panorama single-cell mega-size electrochemical etching (MS-ECE) chamber systems for processing panorama position-sensitive mega-size polycarbonate ion image detectors (MS-PCIDs) of potential for many neutron and ion detection applications in particular hydrogen ions or proton tracks and images detected for the first time in polycarbonates in this study. The MS-PCID is simply a large polycarbonate sheet of a desired size. The single-cell MS-ECE invented consists of two large equally sized transparent Plexiglas sheets as chamber walls holding a MS-PCID and the ECE chamber components tightly together. One wall has a large flat stainless steel electrode (dry cell) attached to it which is directly in contact with the MS-PCID and the other wall has a rod electrode with two holes to facilitate feeding and draining out the etching solution from the wet cell. A silicon rubber washer plays the role of the wet cell to hold the etchant and the electrical insulator to isolate the dry cell from the wet cell. A simple 50 Hz-HV home-made generator provides an adequate field strength through the two electrodes across the MS-ECE chamber. Two panorama single-cell MS-ECE chamber systems (circular and rectangular shapes) constructed were efficiently applied to processing the MS-PCIDs for 4π ion emission image detection of different gases in particular hydrogen ions or protons in a 3.5 kJ plasma focus device (PFD as uniquely observed by the unaided eyes). The panorama MS-PCID/MS-ECE image detection systems invented are novel with high potential for many applications in particular as applied to 4π panorama ion emission angular distribution image detection studies in PFD space, some results of which are presented and discussed.

1.
R. L.
Fleischer
,
P. B.
Price
, and
R. M.
Walker
,
Nuclear Tracks in Solids: Principles and Applications
(
University of California Press
,
Berkeley, CA
,
1975
), p.
605
.
2.
L.
Tommasino
and
C.
Armellini
, “
A new etching technique for damage track detectors
,”
Radiat. Eff.
20
,
253
255
(
1973
).
3.
M.
Sohrabi
, “
Electrochemical etching amplification of recoil particle tracks in polymers and is applications in fast neutron personnel dosimetry
,”
Health Phys.
27
,
598
600
(
1974
).
4.
M.
Sohrabi
, “
Simplified fast neutron dosimeter
,” U.S. patent 4,157,473 (
5 June 1979
).
5.
M.
Sohrabi
and
K. Z.
Morgan
, “
A new polycarbonate fast neutron personnel dosimeter
,”
Am. Ind. Hyg. Assoc. J.
39
,
433
447
(
1978
).
6.
J.
Olszewski
,
T.
Domański
,
M.
Hawryński
, and
W.
Chruścielewski
, “
Some aspects and results of the electrochemical etching of a thin-foil track detector
,”
Nucl. Tracks
6
,
161
174
(
1982
).
7.
G.
Somogyi
, “
Processing of plastic track detectors
,”
Nucl. Tracks
1
,
3
18
(
1977
).
8.
M.
Sohrabi
and
K. Z.
Morgan
, “
Some studies on the development and applications of recoil particle track amplification by electrochemical etching for fast neutron dosimetry
,” Progress Report on USERDA ORO-4814-9, Contract No. AT-(40-1)-4814,
1976
.
9.
M.
Sohrabi
, “
A new triplet electrochemical etching (TECE) method
,”
Radiat. Prot. Dosim.
48
,
279
283
(
1993
).
10.
K.
Turek
, “
Universal multidetector etching stand for electrochemically etched plastic track detectors
,”
Nucl. Tracks Radiat. Meas.
20
,
601
604
(
1992
).
11.
M.
Sohrabi
and
H.
Zainali
, “
A new multi-detector ECE processing chamber system for large-scale alpha, radon and neutron dosimetry applications
,”
Radiat. Meas.
25
,
463
464
(
1995
).
12.
M.
Sohrabi
, “
Discovery of an ‘internal heating effect’ during electrochemical etching of polymeric dosimeters: A study of polymer characteristics
,”
Int. J. Radiat. Appl. Instrum., Part D Nucl. Tracks Radiat. Meas.
12
,
179
183
(
1986
).
13.
R. C.
Singh
and
H. S.
Virk
, “
Internal heating effect during electrochemical etching of Lexan polycarbonate
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
29
,
579
582
(
1987
).
14.
K.
Turek
,
J.
Bednar
,
G.
Dajko
, and
F.
Spurny
, “
Study of parameters influencing the internal heating effect during electrochemical etching at room temperature rate
,”
Int. J. Radiat. Appl. Instrum., Part D Nucl. Tracks Radiat. Meas.
19
,
227
230
(
1991
).
15.
M.
Novak
,
K.
Turek
,
J.
Jakes
, and
J.
Voigt
, “
Directly heated etching stand for electrochemical treatment of track detectors
,”
Radiat. Meas.
28
,
223
226
(
1997
).
16.
K.
Turek
,
J.
Bednar
, and
G.
Dajko
, “
Time-variations of temperature during electrochemical etching
,”
Nucl. Tracks Radiat. Meas.
18
,
415
417
(
1991
).
17.
E.
Pitt
,
A.
Scharman
, and
B.
Wiemer
, “
Model calculations for electrochemically etched neutron detectors
,”
Radiat. Prot. Dosim.
23
,
179
182
(
1988
).
18.
M.
Sohrabi
, “
A new multi-chamber electrochemical etching system approach for rapid characteristic response studies in polymeric dosimeters
,”
Radiat. Prot. Dosim.
12
,
55
59
(
1985
).
19.
M.
Sohrabi
and
M.
Katouzi
, “
A new parameter in the electrochemical etching of polymer track detectors
,”
Nucl. Instrum. Methods Phys. Res., Sect. B
82
,
442
446
(
1993
).
20.
M.
Sohrabi
and
Gh.
Zainali
, “
Versatile electrochemical etching chamber (Vecec) system for multi-size and/or multi-shape detector processing
,”
Radiat. Meas.
31
,
153
156
(
1999
).
21.
D.
Pressyanov
,
E.
Foerster
,
S.
Georgiev
,
I.
Dimitrova
, and
K.
Mitev
, “
Traceability of CDs/DVDs used as retrospective 222Rn detectors to reference STAR laboratory
,”
Radiat. Meas.
59
,
165
171
(
2013
).
22.
L.
Tommasino
,
G.
Zapparoli
,
R. V.
Griffith
, and
A.
Mattei
, “
Electrochemical etching—II; methods, apparatus and results
,”
Nucl. Tracks
4
,
197
201
(
1981
).
23.
M.
Sohrabi
,
A.
Hakimi
, and
S. R.
Mahdavi
, “
A novel position-sensitive mega-size dosimeter for photoneutrons in high-energy x-ray medical accelerators
,”
Phys. Med.
32
,
778
786
(
2016
).
24.
M.
Sohrabi
,
A.
Zarinshad
, and
M.
Habibi
, “
Breakthrough in 4π ion emission mechanism understanding in plasma focus devices
,”
Sci. Rep.
6
,
38843
(
2016
).
25.
M.
Hassib
and
E.
Piesch
, “
Electrochemical etching of neutron-induced tracks in plastic detectors using a 50 Hz electric supply
,”
Nucl. Instrum. Methods
154
,
377
381
(
1978
).
26.
M.
Sohrabi
,
M.
Khodadadi
, and
A.
Hakimi
, “
Broadening alpha registration energy range of 250 μm polycarbonate detectors by a single 50 Hz–HV ECE method
,”
Radiat. Meas.
75
,
39
44
(
2015
).
27.
M.
Sohrabi
and
A.
Hakimi
, “
Novel 6 MV x-ray photoneutron detection and dosimetry of medical accelerators
,”
Phys. Med.
36
,
103
109
(
2017
).
You do not currently have access to this content.