Commonly used thermal analysis tools such as calorimeter and thermal conductivity meter are separated instruments and limited by low throughput, where only one sample is examined each time. This work reports an infrared based optical calorimetry with its theoretical foundation, which is able to provide an integrated solution to characterize thermal properties of materials with high throughput. By taking time domain temperature information of spatially distributed samples, this method allows a single device (infrared camera) to determine the thermal properties of both phase change systems (melting temperature and latent heat of fusion) and non-phase change systems (thermal conductivity and heat capacity). This method further allows these thermal properties of multiple samples to be determined rapidly, remotely, and simultaneously. In this proof-of-concept experiment, the thermal properties of a panel of 16 samples including melting temperatures, latent heats of fusion, heat capacities, and thermal conductivities have been determined in 2 min with high accuracy. Given the high thermal, spatial, and temporal resolutions of the advanced infrared camera, this method has the potential to revolutionize the thermal characterization of materials by providing an integrated solution with high throughput, high sensitivity, and short analysis time.

1.
A. A.
Balandin
,
Nat. Mater.
10
(
8
),
569
(
2011
).
2.
M.
Dresselhaus
,
G.
Dresselhaus
,
J.
Charlier
, and
E.
Hernandez
,
Philos. Trans. R. Soc., A
362
(
1823
),
2065
(
2004
).
3.
J.
Che
,
T.
Cagin
, and
W.
Goddard
 III
,
Nanotechnology
11
(
2
),
65
(
2000
).
4.
F.
Agyenim
,
N.
Hewitt
,
P.
Eames
, and
M.
Smyth
,
Renewable Sustainable Energy Rev.
14
(
2
),
615
(
2010
).
5.
B.
Zalba
,
J. M.
Marín
,
L. F.
Cabeza
, and
H.
Mehling
,
Appl. Therm. Eng.
23
(
3
),
251
(
2003
).
6.
L.
Fan
and
J. M.
Khodadadi
,
Renewable Sustainable Energy Rev.
15
(
1
),
24
(
2011
).
7.
M.
Avrami
,
J. Chem. Phys.
7
(
12
),
1103
(
1939
).
8.
A. M.
Khudhair
and
M. M.
Farid
,
Energy Convers. Manage.
45
(
2
),
263
(
2004
).
9.
A. A.
Balandin
,
S.
Ghosh
,
W.
Bao
,
I.
Calizo
,
D.
Teweldebrhan
,
F.
Miao
, and
C. N.
Lau
,
Nano Lett.
8
(
3
),
902
(
2008
).
10.
S. M.
Lee
,
Rev. Sci. Instrum.
80
(
2
),
024901
(
2009
).
11.
J.
Klaasse
and
E.
Brűck
,
Rev. Sci. Instrum.
79
(
12
),
123906
(
2008
).
12.
T.
Ozawa
,
Thermochim. Acta
355
(
1
),
35
(
2000
).
13.
H.
Pollock
and
A.
Hammiche
,
J. Phys. D: Appl. Phys.
34
(
9
),
R23
(
2001
).
14.
T.
Hatakeyama
, and
F.
Quinn
,
Thermal Analysis: Fundamentals and Applications to Polymer Science
(
John Wiley & Sons Ltd.
,
1999
).
15.
G. W.
Höhne
,
W.
Hemminger
, and
H. J.
Flammersheim
,
Differential Scanning Calorimetry
(
Springer
,
1996
), pp.
21
40
.
16.
M. A.
Presley
and
P. R.
Christensen
,
J. Geophys. Res.
102
(
E3
),
6535
(
1997
).
17.
J. J.
Lavinder
,
S. B.
Hari
,
B. J.
Sullivan
, and
T. J.
Magliery
,
J. Am. Chem. Soc.
131
(
11
),
3794
(
2009
).
18.
T. L.
Blundell
,
H.
Jhoti
, and
C.
Abell
,
Nat. Rev. Drug Discovery
1
(
1
),
45
(
2002
).
19.
G.
Hautier
,
A.
Jain
,
H.
Chen
,
C.
Moore
,
S. P.
Ong
, and
G.
Ceder
,
J. Mater. Chem.
21
(
43
),
17147
(
2011
).
20.
K. A.
Chan
and
S. G.
Kazarian
,
J. Comb. Chem.
7
(
2
),
185
(
2005
).
21.
H.
Stimson
,
Am. J. Phys.
23
(
9
),
614
(
1955
).
22.
P.
Kim
,
L.
Shi
,
A.
Majumdar
, and
P.
McEuen
,
Phys. Rev. Lett.
87
(
21
),
215502
(
2011
).
23.
F.
He
,
C. E.
Woods
,
G. W.
Becker
,
L. O.
Narhi
, and
V. I.
Razinkov
,
J. Pharm. Sci.
100
(
12
),
5126
(
2011
).
24.
C. J.
Lasance
,
IEEE Trans. Compon. Packag. Technol.
25
(
3
),
366
(
2002
).
25.
S. V.
Garimella
,
A. S.
Fleischer
,
J. Y.
Murthy
,
A.
Keshavarzi
,
R.
Prasher
,
C.
Patel
,
S. H.
Bhavnani
,
R.
Venkatasubramanian
,
R.
Mahajan
, and
Y.
Joshi
,
IEEE Trans. Compon. Packag. Technol.
31
(
4
),
801
(
2008
).
26.
S.
Hou
,
W.
Zheng
,
B.
Duong
, and
M.
Su
,
J. Phys. Chem. C
120
(
38
),
22110
(
2016
).
27.
H.
Vargas
and
L.
Miranda
,
Rev. Sci. Instrum.
74
(
1
),
794
(
2003
).
28.
G.
Pangilinan
,
H.
Ladouceur
, and
T.
Russell
,
Rev. Sci. Instrum.
71
(
10
),
3846
(
2000
).
29.
S.
Van Herwaarden
,
E.
Iervolino
,
F.
Van Herwaarden
,
T.
Zijffels
,
A.
Leenaers
, and
V.
Mathot
,
Thermochim. Acta
522
(
1
),
46
(
2011
).
30.
G. V.
Poel
and
V. B.
Mathot
,
Thermochim. Acta
446
(
1
),
41
(
2006
).
31.
J.
Luo
,
K.
Ying
, and
J.
Bai
,
Signal Process.
85
(
7
),
1429
(
2005
).
32.
R. C.
Weast
,
M. J.
Astle
,
W. H.
Beyer
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
Boca Raton, FL
,
1988
), Vol. 69.
33.
R. M.
Stephenson
,
Handbook of the Thermodynamics of Organic Compounds
(
Springer Science & Business Media
,
2012
).
34.
C. P.
Camirand
,
Thermochim. Acta
417
(
1
),
1
(
2004
).
You do not currently have access to this content.