Lock-in amplifiers (LIAs) are extensively used to perform high-resolution measurements. Ideally, when using LIAs, it would be possible to measure a minimum signal variation limited by the instrument input equivalent noise at the operating frequency and the chosen filtering bandwidth. Instead, digital LIAs show an unforeseen 1/f noise at the instrument demodulated output, proportional to the signal amplitude that poses a fundamental limit to the minimum detectable signal variation using the lock-in technique. In particular, the typical resolution limit of fast operating LIAs (>1 MHz) is of tens of ppm, orders of magnitude worse than the expected value. A detailed analysis shows that the additional noise is due to slow fluctuations of the signal gain from the generation stage to the acquisition one, mainly due to the digital-to-analog and analog-to-digital converters. To compensate them, a switched ratiometric technique based on two analog-to-digital converters alternately acquiring the signal coming from the device under test and the stimulus signal has been conceived. A field-programmabale gate array-based LIA working up to 10 MHz and implementing the technique has been realized, and results demonstrate a resolution improvement of more than an order of magnitude (from tens of ppm down to sub-ppm values) compared to standard implementations working up to similar frequencies. The technique is generally applicable without requiring calibration nor ad hoc experimental arrangements.

1.
M. L.
Meade
,
Lock-In Amplifiers: Principles and Applications
(
Peter Peregrinus Ltd.
,
London
,
1983
).
2.
S.
Chen
,
H. C.
Hsiung
,
W.
Su
, and
D. P.
Tsai
, “
Convenient near-field optical measurement and analysis of polystyrene spheres
,”
Vacuum
81
,
129
132
(
2006
).
3.
Y.
Li
,
N.
Zhou
,
A.
Raman
, and
X.
Xu
, “
Three-dimensional mapping of optical near field with scattering SNOM
,”
Opt. Express
23
(
14
),
18730
18735
(
2015
).
4.
C. W.
Freudiger
,
W.
Min
,
B. G.
Saar
,
G. R.
Holtom
,
C.
He
,
J. C.
Tsai
,
J. X.
Kang
, and
X. S.
Xie
, “
Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy
,”
Science
322
(
5909
),
1857
1861
(
2008
).
5.
J.
Wei
,
C.
Yue
,
M.
van der Velden
,
Z. L.
Chen
,
Z. W.
Liu
,
K. A. A.
Makinwa
, and
P. M.
Sarro
, “
Design, fabrication and characterization of a femto-Farad capacitive sensor for pico-liter liquid monitoring
,”
Sens. Actuators, A
162
(
2
),
406
417
(
2010
).
6.
N.
Haandbæk
,
O.
With
,
S. C.
Bürgel
,
F.
Heer
, and
A.
Hierlemann
, “
Resonance-enhanced microfluidic impedance cytometer for detection of single bacteria
,”
Lab Chip
14
,
3313
3324
(
2014
).
7.
C.
Azzolini
,
A.
Magnanini
,
M.
Tonelli
,
G.
Chiorboli
, and
C.
Morandi
, “
A CMOS vector lock-in amplifier for sensor applications
,”
Microelectron. J.
41
(
8
),
449
457
(
2010
).
8.
J.
Woo
,
J.
Cho
,
C.
Boyd
, and
K.
Najafi
, “
Whole-angle-mode micromachined fused-silica birdbath resonator gyroscope (WA-BRG)
,” in
2014 IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS)
,
2014
.
9.
G.
Gervasoni
,
M.
Carminati
,
G.
Ferrari
,
M.
Sampietro
,
E.
Albisetti
,
D.
Petti
,
P.
Sharma
, and
R.
Bertacco
, “
A 12-channel dual-lock-in platform for magneto-resistive DNA detection with ppm resolution
,” in
Proceedings of 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS)
(
IEEE
,
2014
), pp.
316
319
.
10.
M.
Carminati
,
A.
Rottigni
,
D.
Alagna
,
G.
Ferrari
, and
M.
Sampietro
, “
Compact FPGA-based elaboration platform for wide-bandwidth electrochemical measurements
,” in
Proceedings of 2012 IEEE I2MTC—International Instrumentation and Measurement Technology Conference
(
IEEE
,
2012
), Vol. 214706, pp.
264
267
.
11.
M.
Carminati
,
G.
Gervasoni
,
M.
Sampietro
, and
G.
Ferrari
, “
Note: Differential configurations for the mitigation of slow fluctuations limiting the resolution of digital lock-in amplifiers
,”
Rev. Sci. Instrum.
87
(
2
),
026102
(
2016
).
12.
M. C.
Foote
and
A. C.
Anderson
, “
Capacitance bridge for low temperature, high-resolution dielectric measurements
,”
Rev. Sci. Instrum.
58
(
1
),
130
(
1987
).
13.
AH 2700A, Andeen-Hagerling.
14.
M. A. P.
Pertijs
,
K. A. A.
Makinwa
, and
J. H.
Huijsing
, “
A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C
,”
IEEE J. Solid-State Circuits
40
(
12
),
2805
2815
(
2005
).
15.
K.
Mochizuki
,
T.
Masuda
, and
K.
Watanabe
, “
An interface circuit for high-accuracy signal processing of differential-capacitance transducers
,”
IEEE Trans. Instrum. Meas.
47
(
4
),
823
827
(
1998
).
16.
S.
Pennisi
, “
High-performance and simple CMOS interface circuit for differential capacitive sensors
,”
IEEE Trans. Circuits Syst. II: Express Briefs
52
(
6
),
327
330
(
2005
).
17.
PerkinElmer
,
Low Level Optical Detection Using Lock-In Amplifier Techniques
(
PerkinElmer
,
2000
).
18.
G.
Ferrari
,
G.
Gervasoni
,
M.
Carminati
,
F.
Campoli
, patent application PCT/IB2017/050877 (
16 February 2017
).
19.
G.
Gervasoni
,
M.
Carminati
, and
G.
Ferrari
, “
FPGA-based lock-in amplifier with sub-ppm resolution working up to 6 MHz
,” in
2016 IEEE International Conference on Electronics, Circuits and Systems (ICECS)
,
2016
.
You do not currently have access to this content.