A sputter deposition source for the use in ultrahigh vacuum (UHV) is described, and some properties of the source are analyzed. The operating principle is based on the design developed by Mayr et al. [Rev. Sci. Instrum. 84, 094103 (2013)], where electrons emitted from a filament ionize argon gas and the Ar+ ions are accelerated to the target. In contrast to the original design, two grids are used to direct a large fraction of the Ar+ ions to the target, and the source has a housing cooled by liquid nitrogen to reduce contaminations. The source has been used for the deposition of zirconium, a material that is difficult to evaporate in standard UHV evaporators. At an Ar pressure of 9×106 mbar in the UHV chamber and moderate emission current, a highly reproducible deposition rate of ≈1 ML in 250 s was achieved at the substrate (at a distance of ≈50 mm from the target). Higher deposition rates are easily possible. X-ray photoelectron spectroscopy shows a high purity of the deposited films. Depending on the grid voltages, the substrate gets mildly sputtered by Ar+ ions; in addition, the substrate is also reached by electrons from the negatively biased sputter target.

1.
T.
Michely
,
M.
Kalff
, and
G.
Comsa
,
Mater. Res. Soc. Symp. Proc.
528
,
179
(
1998
).
2.
C.
Schwebel
,
F.
Meyer
,
G.
Gautherin
, and
C.
Pellet
,
J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom.
4
,
1153
(
1986
).
3.
N.
Lee
,
G.
Xue
, and
J. E.
Greene
,
J. Appl. Phys.
80
,
769
(
1996
).
4.
L.
Mayr
,
N.
Köpfle
,
A.
Auer
,
B.
Klötzer
, and
S.
Penner
,
Rev. Sci. Instrum.
84
,
094103
(
2013
).
5.
T.
Götsch
,
W.
Wallisch
,
M.
Stöger-Pollach
,
B.
Klötzer
, and
S.
Penner
,
AIP Adv.
6
,
025119
(
2016
).
6.
B.
Klötzer
and
S.
Penner
, private communication (
2016
).
7.
U.
Bischler
and
E.
Bertel
,
J. Vac. Sci. Technol., A
11
,
458
(
1993
).
8.
C.
Eibl
,
G.
Lackner
, and
A.
Winkler
,
J. Vac. Sci. Technol., A
16
,
2979
(
1998
).
9.
N.
Matsunami
,
Y.
Yamamura
,
Y.
Itikawa
,
N.
Itoh
,
Y.
Kazumata
,
S.
Miyagawa
,
K.
Morita
,
R.
Shimizu
, and
H.
Tawara
, “
Energy dependence of the yields of ion-induced sputtering of monatomic solids
,” Technical Report No. IPPJ-AM-32,
Institute of Plasma Physics, Nagoya University
,
Japan
,
1983
.
10.

We have used 99.999% Ar (CANgas, www.messergroup.com).

11.
R. G.
Jordan
,
A. M.
Begley
,
S. D.
Barrett
,
P. J.
Durham
, and
W. M.
Temmerman
,
Solid State Commun.
76
,
579
(
1990
).
12.
M.
Methfessel
,
D.
Hennig
, and
M.
Scheffler
,
Surf. Sci.
287–288
,
785
(
1993
).
13.
H.
Li
,
J.-I. J.
Choi
,
W.
Mayr-Schmölzer
,
C.
Weilach
,
C.
Rameshan
,
F.
Mittendorfer
,
J.
Redinger
,
M.
Schmid
, and
G.
Rupprechter
,
J. Phys. Chem. C
119
,
2462
(
2015
).
14.
J. I. J.
Choi
,
W.
Mayr-Schmölzer
,
F.
Mittendorfer
,
J.
Redinger
,
U.
Diebold
, and
M.
Schmid
,
J. Phys.: Condens. Matter
26
,
225003
(
2014
).
15.
J. M. E.
Harper
,
J. J.
Cuomo
,
R. J.
Gambino
, and
H. R.
Kaufman
,
Nucl. Instrum. Methods Phys. Res., Sect. B
7–8
,
886
(
1985
).
16.
M.
Schmid
,
C.
Lenauer
,
A.
Buchsbaum
,
F.
Wimmer
,
G.
Rauchbauer
,
P.
Scheiber
,
G.
Betz
, and
P.
Varga
,
Phys. Rev. Lett.
103
,
076101
(
2009
).
17.
Y.
Lin
and
D. C.
Joy
,
Surf. Interface Anal.
37
,
895
(
2005
).
18.
E.
Benes
,
M.
Gröschl
,
W.
Burger
, and
M.
Schmid
,
Sens. Actuators, A
48
,
1
(
1995
).
19.
G.
Hayderer
,
M.
Schmid
,
P.
Varga
,
H.
Winter
, and
F.
Aumayr
,
Rev. Sci. Instrum.
70
,
3696
(
1999
).
You do not currently have access to this content.