We achieved a low-cost and small-sized Rb optical frequency standard based on 85Rb 5S1/2 → 6P3/2 transition with 10−15 stability, which is comparable with that of the best 532 nm I2 optical frequency standards. In this system, we directly lock the 420 nm diode laser on the 5S1/2 F = 3 → 6P3/2F = 4 hyperfine transition line without an additional Pound-Drever-Hall pre-locking system. The signal-to-noise-ratio reaches as high as 350 000 when the averaging time is at 1 s. Eventually by the fluctuation of the residual error signal after locking, the preliminary stability of the optical frequency standard reaches 1.2×1014/τ, decreasing to 2.1 × 10−15 at 80 s. It shows potential in stability performance, experimental cost, and system volume compared with the 532 nm I2 optical frequency standard as a wavelength standard. It also opens a door for the achievement of wavelength standards by using higher excited states of alkalies.

1.
N.
Hinkley
,
J. A.
Sherman
,
N. B.
Phillips
,
M.
Schioppo
,
N. D.
Lemke
,
K.
Beloy
,
M.
Pizzocaro
,
C. W.
Oates
, and
A. D.
Ludlow
,
Science
341
,
1215
1218
(
2013
).
2.
B. J.
Bloom
,
T. L.
Nicholson
,
J. R.
Williams
,
S. L.
Campbell
,
M.
Bishof
,
X.
Zhang
,
W.
Zhang
,
S. L.
Bromley
, and
J.
Ye
,
Nature
506
,
71
75
(
2014
).
3.
T. L.
Nicholson
,
S. L.
Campbell
,
R. B.
Hutson
,
G. E.
Marti
,
B. J.
Bloom
,
R. L.
McNally
,
W.
Zhang
,
M. D.
Barrett
,
M. S.
Safronova
,
G. F.
Strouse
,
W. L.
Tew
, and
J.
Ye
,
Nat. Commun.
6
,
6896
(
2015
).
4.
I.
Ushijima
,
M.
Takamoto
,
M.
Das
,
T.
Ohkubo
, and
H.
Katori
,
Nat. Photonics
9
,
185
189
(
2015
).
5.
C.
Fertig
and
K.
Gibble
,
Phys. Rev. Lett.
85
,
1622
1625
(
2000
).
6.
M.
Abgrall
,
J.
Guena
,
M.
Lours
,
G.
Santarelli
,
M. E.
Tobar
,
S.
Bize
,
S.
Grop
,
B.
Dubois
,
Ch.
Fluhr
, and
V.
Giordano
,
IEEE Trans. Ultrason., Ferroelectr., Freq. Control
63
(
8
),
1198
1203
(
2016
).
7.
CCTF 2004 Recommendation CCTF-1 2004 concerning secondary representations of the second p. 38.
8.
P. L.
Bender
,
E. C.
Beaty
, and
A. R.
Chi
,
Phys. Rev. Lett.
1
(
9
),
311
313
(
1958
).
9.
M.
Arditi
and
T. R.
Carver
,
IEEE Trans. Instrum. Meas.
IM-13
(
2
),
146
152
(
1964
).
10.
N.
Cyr
,
M.
Tetu
, and
M.
Breton
,
IEEE Trans. Instrum. Meas.
42
,
640
649
(
1993
).
11.
C. S.
Edwards
,
G. P.
Barwood
,
H. S.
Margolis
,
P.
Gill
, and
W. R. C.
Rowley
,
Metrologia
42
,
464
467
(
2005
).
12.
C.
Affolderbach
and
G.
Mileti
,
Rev. Sci. Instrum.
76
(
7
),
073108
(
2005
).
13.
H. S.
Moon
,
W. K.
Lee
,
L.
Lee
, and
J. B.
Kim
,
Appl. Phys. Lett.
85
(
18
),
3965
3967
(
2004
).
14.
Y. N. M.
de Escobar
,
S. P.
Alvarez
,
S.
Coop
,
T.
Vanderbruggen
,
K. T.
Kaczmarek
, and
M. W.
Mitchell
,
Opt. Lett.
40
(
20
),
4731
4734
(
2015
).
15.
S.
Masuda
,
A.
Seki
, and
S.
Niki
,
Appl. Opt.
46
(
21
),
4780
4785
(
2007
).
16.
F.
Hong
,
Meas. Sci. Technol.
28
,
012002
(
2017
).
17.
R. K.
Raj
,
D.
Bloch
,
J. J.
Snyder
,
G.
Camy
, and
M.
Ducloy
,
Phys. Rev. Lett.
44
(
19
),
1251
1254
(
1980
).
18.
L.
Hollberg
,
L.
Ma
,
M.
Hohenstatt
, and
J. L.
Hall
,
Proc. SPIE
426
,
91
98
(
1983
).
19.
N.
Ito
,
Rev. Sci. Instrum.
71
(
7
),
2655
2662
(
2000
).
20.
D. J.
McCarron
,
S. A.
King
, and
S. L.
Cornish
,
Meas. Sci. Technol.
19
,
105601
(
2008
).
21.
L.
Mudarikwa
,
K.
Pahwa
, and
J.
Goldwin
,
J. Phys. B: At., Mol. Opt. Phys.
45
,
065002
(
2012
).
22.
V.
Negnevitsky
and
L. D.
Turner
,
Opt. Express
21
(
3
),
3103
3113
(
2013
).
23.
W.
Gong
,
X.
Peng
, and
H.
Guo
,
Rev. Sci. Instrum.
85
,
073103
(
2014
).
24.
A.
Arie
and
R. L.
Byer
,
J. Opt. Soc. Am. B
10
(
11
),
1990
1997
(
1993
).
25.
J.
Ye
,
L.
Robertsson
,
S.
Picard
,
L.
Ma
, and
J. L.
Hall
,
IEEE Trans. Instrum. Meas.
48
(
2
),
544
549
(
1999
).
26.
J. L.
Hall
,
L.
Ma
,
M.
Taubman
,
B.
Tiemann
,
F.
Hong
,
O.
Pfister
, and
J.
Ye
,
IEEE Trans. Instrum. Meas.
48
(
2
),
583
586
(
1999
).
27.
F.
Hong
,
J.
Ishikawa
,
Z.
Bi
,
J.
Zhang
,
K.
Seta
,
A.
Onae
,
J.
Yoda
, and
H.
Matsumoto
,
IEEE Trans. Instrum. Meas.
50
(
2
),
486
489
(
2001
).
28.
J.
Ye
,
L.
Ma
, and
J. L.
Hall
,
Phys. Rev. Lett.
87
(
27
),
270801
(
2001
).
29.
E.
Zang
,
J.
Cao
,
Y.
Li
,
C.
Li
,
Y.
Deng
, and
C.
Gao
,
IEEE Trans. Instrum. Meas.
56
(
2
),
673
676
(
2007
).
30.
T.
Schuldt
,
K.
Döringshoff
,
E. V.
Kovalchuk
,
A.
Keetman
,
J.
Pahl
,
A.
Peters
, and
C.
Braxmaier
,
Appl. Opt.
56
(
4
),
1101
1106
(
2017
).
31.
K.
Döringshoff
,
T.
Schuldt
,
E. V.
Kovalchuk
,
J.
Stühler
,
C.
Braxmaier
, and
A.
Peters
,
Appl. Phys. B
123
,
183
(
2017
).
32.
M. L.
Harris
,
S. L.
Cornish
,
A.
Tripathi
, and
I. G.
Hughes
,
J. Phys. B: At., Mol. Opt. Phys.
41
,
085401
(
2008
).
33.
G. C.
Bjorklund
,
Opt. Lett.
5
(
1
),
15
17
(
1980
).
34.
J. L.
Hall
,
L.
Hollberg
,
T.
Baer
, and
H. G.
Robinson
,
Appl. Phys. Lett.
39
(
9
),
680
682
(
1981
).
35.
J.
Chen
,
Chin. Sci. Bull.
54
(
3
),
348
352
(
2009
).
36.
T.
Zhang
,
Y.
Wang
,
X.
Zang
,
W.
Zhuang
, and
J.
Chen
,
Chin. Sci. Bull.
58
(
17
),
2033
2038
(
2013
).
37.
S.
Zhang
,
Y.
Wang
,
T.
Zhang
,
W.
Zhuang
, and
J.
Chen
,
Chin. Phys. Lett.
30
(
4
),
040601
(
2013
).
38.
Z.
Xu
,
W.
Zhuang
,
Y.
Wang
,
D.
Wang
,
X.
Zhang
,
X.
Xue
,
D.
Pan
, and
J.
Chen
, in
Proceedings 2013 Joint UFFC, EFTF and PFM Symposium
(
IEEE
,
2013
), pp.
395
398
.
39.
D.
Pan
,
Z.
Xu
,
X.
Xue
,
W.
Zhuang
, and
J.
Chen
, in
2014 IEEE International Frequency Control Symposium (FCS)
(
IEEE
,
2014
), 14482542.
40.
Y. F.
Verolainen
and
A. Y.
Nikolaich
,
Sov. Phys. Usp.
25
(
6
),
431
447
(
1982
).
41.
T. L.
Nicholson
,
M. J.
Martin
,
J. R.
Williams
,
B. J.
Bloom
,
M.
Bishof
,
M. D.
Swallows
,
S. L.
Campbell
, and
J.
Ye
,
Phys. Rev. Lett.
109
,
230801
(
2012
).
You do not currently have access to this content.