This paper describes the design of a flexible titanium foil cell, as well as its applications in hydrothermal experiments and in non-contaminating storage of seafloor hydrothermal fluids. A flexible cell constructed totally from pure titanium (Grade 1) can be used in corrosive environment because of the excellent chemical stability and temperature tolerance of the material. Theoretical calculation and finite element analysis of the titanium foil cell have been conducted to identify its flexibility and deformation mode. Two applications, i.e., hydrothermal reaction and non-contaminating fluid sampling, were introduced subsequently. The flexible titanium foil cell was successfully tested at elevated temperature and pressure of up to 400 °C and 40 MPa, respectively, demonstrating that it could be widely used under supercritical water conditions.

1.
K. M.
Ok
,
D.
O’Hare
,
R. I.
Smith
,
M.
Chowdhury
, and
H.
Fikremariam
, “
New large volume hydrothermal reaction cell for studying chemical processes under supercritical hydrothermal conditions using time-resolved in situ neutron diffraction
,”
Rev. Sci. Instrum.
81
(
12
),
125107
(
2010
).
2.
F.
Demoisson
,
M.
Ariane
,
A.
Leybros
,
H.
Muhr
, and
F.
Bernard
, “
Design of a reactor operating in supercritical water conditions using CFD simulations. Examples of synthesized nanomaterials
,”
J. Supercrit. Fluids
58
(
3
),
371
377
(
2011
).
3.
H. L.
Hellstern
,
J.
Becker
,
P.
Hald
,
M.
Bremholm
,
A.
Mamakhel
, and
B. B.
Iversen
, “
Development of a dual-stage continuous flow reactor for hydrothermal synthesis of hybrid nanoparticles
,”
Ind. Eng. Chem. Res.
54
(
34
),
8500
8508
(
2015
).
4.
R. E.
Mielke
,
M. J.
Russell
,
P. R.
Wilson
,
S. E.
McGlynn
,
M.
Coleman
,
R.
Kidd
, and
I.
Kanik
, “
Design, fabrication, and test of a hydrothermal reactor for origin-of-life experiments
,”
Astrobiology
10
(
8
),
799
810
(
2010
).
5.
S.
Mitsuzawa
,
S.
Deguchi
,
K.
Takai
,
T.
Kaoru
, and
H.
Koki
, “
Flow-type apparatus for studying thermotolerance of hyperthermophiles under conditions simulating hydrothermal vent circulation
,”
Deep Sea Res., Part I
52
(
6
),
1085
1092
(
2005
).
6.
K.
Ding
and
W. E.
Seyfried
, “
Direct pH measurement of NaCl-bearing fluid with an in situ sensor at 400 °C and 40 megapascals
,”
Science
272
(
5268
),
1634
1636
(
1996
).
7.
G.
Bignall
,
N.
Yamasaki
, and
T.
Hashida
, “
A newly developed flow-reactor with pH measurement system, for laboratory simulation of waterrock interaction processes
,” in
Proceedings World Geothermal Congress 2000
,
Kyushu, Tohoku
(
International Geothermal Association (IGA)
,
2000
), p.
665
.
8.
K.
Ding
and
W. E.
Seyfried
, “
In situ measurement of pH and dissolved H2 in mid-ocean ridge hydrothermal fluids at elevated temperatures and pressures
,”
Chem. Rev.
107
(
2
),
601
622
(
2007
).
9.
Y.
Calzavara
,
C.
Joussot-Dubien
,
H. A.
Turc
,
E.
Fauvel
, and
S.
Sarrade
, “
A new reactor concept for hydrothermal oxidation
,”
J. Supercrit. Fluids
31
(
2
),
195
206
(
2004
).
10.
E.
Fauvel
,
C.
Joussot-Dubien
,
P.
Guichardon
,
G.
Charbit
,
F.
Charbit
, and
S.
Sarrade
, “
A double-wall reactor for hydrothermal oxidation with supercritical water flow across the inner porous tube
,”
J. Supercrit. Fluids
28
(
1
),
47
56
(
2004
).
11.
F. W.
Dickson
,
G.
Tunell
, and
C. W.
Blount
, “
Use of hydrothermal solution equipment to determine solubility of anhydrite in water from 100 °C to 275 °C and from 1 bar to 1000 bars pressure
,”
Am. J. Sci.
261
(
1
),
61
78
(
1963
).
12.
J. J.
Rytuba
and
F. W.
Dickson
, “
Reaction of pyrite and pyrrhotite + quartz + gold with NaCl-H2O solutions, 300∼500 °C, 500-1000 bars and genetic implications
,” in
International Association on the Genesis of Ore Deposits, Problems of Ore Deposition 4th IAGOD Symposium
,
Varna
(
Bulgarian Academy of Science (Bulgarian Acad Sci)
,
1974
), pp.
320
326
.
13.
W. E.
Seyfried
,
P. C.
Gordon
, and
F. W.
Dickson
, “
A new reaction cell for hydrothermal solution equipment
,”
Am. Mineral.
64
,
646
649
(
1979
).
14.
W. E.
Seyfried
, Jr.
,
D. R.
Janecky
, and
M. E.
Berndt
,
Rocking Autoclaves for Hydrothermal Experiments
(
John Wiley
,
New York
,
1987
), pp.
217
239
.
15.
M. E.
Berndt
,
R. R.
Seal
,
W. C.
Shanks
, and
W. E.
Seyfried
, “
Hydrogen isotope systematics of phase separation in submarine hydrothermal systems: Experimental calibration and theoretical models
,”
Geochim. Cosmochim. Acta
60
(
9
),
1595
1604
(
1996
).
16.
G.
Purser
,
C. A.
Rochelle
,
H. C.
Wallis
,
J.
Rosenqvist
,
A. D.
Kilpatrick
, and
B. W. D.
Yardley
, “
Note: CO2-mineral dissolution experiments using a rocking autoclave and a novel titanium reaction cell
,”
Rev. Sci. Instrum.
85
(
8
),
086109
(
2014
).
17.
J. S.
Seewald
,
K. W.
Doherty
,
T. R.
Hammar
, and
S. P.
Liberatore
, “
A new gas-tight isobaric sampler for hydrothermal fluids
,”
Deep Sea Res., Part I
49
,
189
196
(
2002
).
18.
Y.
Chen
,
S. J.
Wu
,
Y. J.
Xie
,
C. J.
Yang
, and
J. F.
Zhang
, “
A novel mechanical gas-tight sampler for hydrothermal fluids
,”
IEEE J. Oceanic Eng.
32
(
3
),
603
608
(
2007
).
19.
S. J.
Wu
,
C. J.
Yang
,
N. J.
Pester
, and
Y.
Chen
, “
A new hydraulically actuated titanium sampling valve for deep-sea hydrothermal fluid sampler
,”
IEEE J. Oceanic Eng.
36
(
3
),
462
469
(
2011
).
20.
K. E.
Wommack
,
S. J.
Williamson
,
A.
Sundbergh
,
R. R.
Helton
,
B. T.
Glazer
,
K.
Portune
, and
S. C.
Cary
, “
An instrument for collecting discrete large-volume water samples suitable for ecological studies of microorganisms
,”
Deep Sea Res., Part I
51
,
1781
1792
(
2004
).
21.
C. D.
Taylor
,
K. W.
Doherty
,
S. J.
Molyneaux
,
A. T.
Morrison
III
,
J. D.
Billings
,
I. B.
Engstrom
,
D. W.
Pfitsch
, and
S.
Honjo
, “
Autonomous Microbial Sampler (AMS), a device for the uncontaminated collection of multiple microbial samples from submarine hydrothermal vents and other aquatic environments
,”
Deep Sea Res., Part I
53
,
894
916
(
2006
).
22.
S. Q.
Lang
,
D. A.
Butterfield
,
M.
Schulte
,
D. S.
Kelley
, and
M. D.
Lilley
, “
Elevated concentrations of formate, acetate and dissolved organic carbon found at the Lost City hydrothermal field
,”
Geochim. Cosmochim. Acta
74
(
3
),
941
952
(
2010
).
23.
X. H.
Wei
,
L.
Liu
,
J. X.
Zhang
,
J. L.
Shi
, and
Q. G.
Guo
, “
Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets
,”
J. Mater. Sci.
45
(
9
),
2449
2455
(
2010
).
You do not currently have access to this content.