The use of a gas cell as a target for laser wakefield acceleration (LWFA) offers the possibility to obtain stable and manageable laser-plasma interaction process, a mandatory condition for practical applications of this emerging technique, especially in multi-stage accelerators. In order to obtain full control of the gas particle number density in the interaction region, thus allowing for a long term stable and manageable LWFA, real-time monitoring is necessary. In fact, the ideal gas law cannot be used to estimate the particle density inside the flow cell based on the preset backing pressure and the room temperature because the gas flow depends on several factors like tubing, regulators, and valves in the gas supply system, as well as vacuum chamber volume and vacuum pump speed/throughput. Here, second-harmonic interferometry is applied to measure the particle number density inside a flow gas cell designed for LWFA. The results demonstrate that real-time monitoring is achieved and that using low backing pressure gas (<1 bar) and different cell orifice diameters (<2 mm) it is possible to finely tune the number density up to the 1019 cm−3 range well suited for LWFA.

1.
E.
Esarey
,
C. B.
Schroeder
, and
W. P.
Leemans
,
Rev. Mod. Phys.
81
,
1229
(
2009
).
2.
C. B.
Schroeder
,
E.
Esarey
,
C. G. R.
Geddes
,
C.
Benedetti
, and
W. P.
Leemans
,
Phys. Rev. Spec. Top.–Accel. Beams
13
,
101301
(
2010
).
3.
A. R.
Maier
,
A.
Meseck
,
S.
Reiche
,
C. B.
Schroeder
,
T.
Seggebrock
, and
F.
Grüner
,
Phys. Rev. X
2
,
031019
(
2012
).
4.
V.
Malka
,
J.
Faure
, and
Y. A.
Gauduel
,
Mutat. Res., Rev. Mutat. Res.
704
,
142
151
(
2010
).
5.
Y.
Glinec
,
J.
Faure
,
V.
Malka
,
T.
Fuchs
,
H.
Szymanowski
, and
U.
Oelfke
,
Med. Phys.
33
,
155
162
(
2006
).
6.
J. M.
Cole
,
J. C.
Wood
,
N. C.
Lopes
,
K.
Poder
,
R. L.
Abel
,
S.
Alatabi
,
J. S. J.
Bryant
,
A.
Jin
,
S.
Kneip
,
K.
Mecseki
,
D. R.
Symes
,
S. P. D.
Mangles
, and
Z.
Najmudin
,
Sci. Rep.
5
,
13244
(
2015
).
7.
L. A.
Gizzi
,
L.
Labate
,
F.
Baffigi
,
F.
Brandi
,
G. C.
Bussolino
,
L.
Fulgentini
,
P.
Koester
,
D.
Palla
, and
F.
Rossi
,
Nucl. Instrum. Methods Phys. Res., Sect. B
355
,
241
-
245
(
2015
).
8.
W.
Leemans
,
A.
Gonsalves
,
H.-S.
Mao
,
K.
Nakamura
,
C.
Benedetti
,
C.
Schroeder
,
C.
Tóth
,
J.
Daniels
,
D.
Mittelberger
,
S.
Bulanov
,
J.-L.
Vay
,
C.
Geddes
, and
E.
Esarey
,
Phys. Rev. Lett.
113
,
245002
(
2014
).
9.
J.
Daniels
,
J.
van Tilborg
,
A. J.
Gonsalves
,
C. B.
Schroeder
,
C.
Benedetti
,
E.
Esarey
, and
W. P.
Leemans
,
Phys. Plasmas
22
,
073112
(
2015
).
10.
J.
Osterhoff
,
A.
Popp
,
Zs.
Major
,
B.
Marx
,
T. P.
Rowlands-Rees
,
M.
Fuchs
,
M.
Geissler
,
R.
Hörlein
,
B.
Hidding
,
S.
Becker
,
E. A.
Peralta
,
U.
Schramm
,
F.
Grüner
,
D.
Habs
,
F.
Krausz
,
S. M.
Hooker
, and
S.
Karsch
,
Phys. Rev. Lett.
101
,
085002
(
2008
).
11.
S.
Corde
,
C.
Thaury
,
A.
Lifschitz
,
G.
Lambert
,
K.
Ta Phuoc
,
X.
Davoine
,
R.
Lehe
,
R. D.
Douillet
,
A.
Rousse
, and
V.
Malka
,
Nat. Commun.
4
,
1501
(
2013
).
12.
B. B.
Pollock
,
C. E.
Clayton
,
J. E.
Ralph
,
F.
Albert
,
A.
Davidson
,
L.
Divol
,
C.
Filip
,
S. H.
Glenzer
,
K.
Herpoldt
,
W.
Lu
,
K. A.
Marsh
,
J.
Meinecke
,
W. B.
Mori
,
A.
Pak
,
T. C.
Rensink
,
J. S.
Ross
,
J.
Shaw
,
G. R.
Tynan
,
C.
Joshi
, and
D. H.
Froula
,
Phys. Rev. Lett.
107
,
045001
(
2011
).
13.
J. S.
Liu
,
C. Q.
Xia
,
W. T.
Wang
,
H. Y.
Lu
,
Ch.
Wang
,
A. H.
Deng
,
W. T.
Li
,
H.
Zhang
,
X. Y.
Liang
,
Y. X.
Leng
,
X. M.
Lu
,
C.
Wang
,
J. Z.
Wang
,
K.
Nakajima
,
R. X.
Li
, and
Z. Z.
Xu
,
Phys. Rev. Lett.
107
,
035001
(
2011
).
14.
See http://www.eupraxia-project.eu/ for information about the EuPRAXIA project, a design study on a European Plasma Research Accelerator with Excellence in Applications.
15.
J.
Ju
and
B.
Cros
,
J. Appl. Phys.
112
,
113102
(
2012
).
16.
L. A.
Gizzi
,
M.
Galimberti
,
A.
Giulietti
,
D.
Giulietti
,
P.
Koester
,
L.
Labate
,
P.
Tomassini
,
Ph.
Martin
,
T.
Ceccotti
,
P.
De Oliveira
, and
P.
Monot
,
Phys. Rev. E
74
,
036403
(
2006
).
17.
L. A.
Gizzi
,
D.
Giulietti
,
A.
Giulietti
,
T.
Afshar-Rad
,
V.
Biancalana
,
P.
Chessa
,
C.
Danson
,
E.
Schifano
,
S. M.
Viana
, and
O.
Willi
,
Phys. Rev. E
49
,
5628
5643
(
1994
).
18.
F.
Hopf
,
A.
Tomita
, and
G.
Al-Jumaily
,
Opt. Lett.
5
,
386
388
(
1980
).
19.
V. P.
Drachev
,
Yu. I.
Krasnikov
, and
P. A.
Bagryansky
,
Rev. Sci. Instrum.
64
,
1010
1013
(
1993
).
20.
J.-W.
Juhn
,
K. C.
Lee
,
Y. S.
Hwang
,
C. W.
Domier
,
N. C.
Luhmann
, Jr.
,
B. P.
Leblanc
,
D.
Mueller
,
D. A.
Gates
, and
R.
Kaita
,
Rev. Sci. Instrum.
81
,
10D540
(
2010
).
21.
S. P.
Velsko
and
D.
Eimerl
,
Appl. Opt.
25
,
1344
1349
(
1986
).
22.
A.
Bideau-Mehu
,
Y.
Guern
,
R.
Abjean
, and
A.
Johannin-Gilles
,
J. Quant. Spectrosc. Radiat. Transfer
25
,
395
402
(
1981
).
23.
F.
Brandi
and
F.
Giammanco
,
Opt. Lett.
32
,
2327
2329
(
2007
).
24.
F.
Brandi
,
F.
Giammanco
,
W. S.
Harris
,
T.
Roche
,
E.
Trask
, and
F. J.
Wessel
,
Rev. Sci. Instrum.
80
,
113501
(
2009
).
25.
F.
Brandi
and
F.
Giammanco
,
Opt. Express
19
,
25479
25487
(
2011
).
26.
F.
Conti
,
M.
Tiberi
,
F.
Giammanco
,
A.
Diaspro
, and
F.
Brandi
,
Laser Phys. Lett.
10
,
056003
(
2013
).
27.
F.
Brandi
,
P.
Marsili
, and
F.
Giammanco
, in
AIP Conference Proceedings: Burning Plasma Diagnostics
(
AIP
,
2008
), Vol.
988
, pp.
132
-
135
.
28.
F.
Brandi
and
F.
Giammanco
,
Opt. Lett.
33
,
2071
-
2073
(
2008
).
29.
V.
Malka
,
C.
Coulaud
,
J. P.
Geindre
,
V.
Lopez
,
Z.
Najmudin
,
D.
Neely
, and
F.
Amiranoff
,
Rev. Sci. Instrum.
71
,
2329
(
2000
).
You do not currently have access to this content.