A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

1.
A. G.
Gaydon
and
I. R.
Hurle
,
The Shock Tube in High-Temperature Chemical Physics
(
Chapman and Hall
,
1963
).
2.
J. N.
Bradley
,
Shock Waves in Chemistry and Physics
(
John Wiley & Sons Inc.
,
1962
).
3.
J. C.
Camm
and
P. H.
Rose
,
Phys. Fluids
6
(
5
),
663
678
(
1963
).
4.
J.
Daiber
,
R.
Rehm
, and
H.
Thompson
, Google Patents,
1973
.
5.
P.
Coates
and
A.
Gaydon
,
Proc. R. Soc. London, Ser. A
283
(
1392
),
18
32
(
1965
).
6.
M.
Grasso
and
D.
Goldfarb
,
Urinary Stones: Medical and Surgical Management
(
John Wiley & Sons
,
2014
).
7.
A.
Loske
,
F.
Prieto
,
M.
Zavala
,
A.
Santana
, and
E.
Armenta
,
Shock Waves
9
(
1
),
49
55
(
1999
).
8.
P. O.
Krehl
,
Eur. Phys. J. H
36
(
1
),
85
152
(
2011
).
9.
G.
Jagadeesh
,
Resonance
13
(
8
),
752
767
(
2008
).
10.
K.
Takayama
and
T.
Saito
,
Annu. Rev. Fluid Mech.
36
,
347
379
(
2004
).
11.
G.
Jagadeesh
and
K.
Takayama
,
J. Indian Inst. Sci.
82
,
1–10
(
2002
).
12.
S. K.
Shrivastava
and
Kailash
,
J. Biosci.
30
(
2
),
269
275
(
2005
).
13.
L. E.
Murr
,
Shock Waves for Industrial Applications
(
Noyes Publications
,
Park Ridge, NJ
,
1988
), available at http://www.osti.gov/scitech/biblio/7259218.
14.
G.
Jagadeesh
and
K.
Nataraja
,
Int. J. Aerosp. Innovations
1
(
1
),
23
30
(
2009
).
15.
M.
Hariharan
,
S.
Janardhanraj
,
S.
Saravanan
, and
G.
Jagadeesh
,
Shock Waves
21
(
3
),
301
306
(
2011
).
16.
D. P.
Gnanadhas
,
M.
Elango
,
S.
Janardhanraj
,
C.
Srinandan
,
A.
Datey
,
R. A.
Strugnell
,
J.
Gopalan
, and
D.
Chakravortty
,
Sci. Rep.
5
,
17440
(
2015
).
17.
R. C.
Ramachandran
,
G.
Raman
,
J.
Subburaj
, and
G.
Jagadeesh
, presented at the 48th Aerospace Sciences Meeting, AIAA, 2010.
18.
P. T.
Lynch
,
T. P.
Troy
,
M.
Ahmed
, and
R. S.
Tranter
,
Anal. Chem.
87
(
4
),
2345
2352
(
2015
).
19.
P. T.
Lynch
,
Rev. Sci. Instrum.
87
(
5
),
056110
(
2016
).
20.
R.
Tranter
and
P. T.
Lynch
,
Rev. Sci. Instrum.
84
(
9
),
094102
(
2013
).
21.
K. P. J.
Reddy
and
N.
Sharath
,
Curr. Sci.
104
(
2
),
172
176
(
2013
).
22.
M.
Brouillette
, presented at the 29th International Symposium on Shock Waves 2, 2015.
23.
H.
Kleine
,
E.
Timofeev
, and
K.
Takayama
,
Shock Waves
14
(
5-6
),
343
357
(
2005
).
24.
D. V.
Reneer
,
R. D.
Hisel
,
J. M.
Hoffman
,
R. J.
Kryscio
,
B. T.
Lusk
, and
J. W.
Geddes
,
J. Neurotrauma
28
(
1
),
95
104
(
2011
).
25.
G.
Jagadeesh
,
G. D.
Prakash
,
S. G.
Rakesh
,
U. S.
Allam
,
M. G.
Krishna
,
S. M.
Eswarappa
, and
D.
Chakravortty
,
Clin. Vaccine Immunol.
18
(
4
),
539
545
(
2011
).
26.
G. D.
Prakash
,
R.
Anish
,
G.
Jagadeesh
, and
D.
Chakravortty
,
Anal. Biochem.
419
(
2
),
292
301
(
2011
).
27.
I. O.
Samuelraj
,
G.
Jagadeesh
, and
K.
Kontis
,
Shock Waves
23
(
4
),
307
316
(
2013
).
28.
Z.
Jiang
,
K.
Takayama
,
K.
Moosad
,
O.
Onodera
, and
M.
Sun
,
Shock Waves
8
(
6
),
337
349
(
1998
).
29.
V.
Menezes
,
K.
Takayama
,
T.
Ohki
, and
J.
Gopalan
,
Appl. Phys. Lett.
87
(
16
),
163504
(
2005
).
30.
H.
Honma
,
I.
Glass
,
C.
Wong
,
O.
Holst-Jensen
, and
D.
Xu
,
Shock Waves
1
(
2
),
111
119
(
1991
).
31.
D. M.
Santos
,
C. A.
Sequeira
, and
J. L.
Figueiredo
,
Quím. Nova
36
(
8
),
1176
1193
(
2013
).
32.
K.
Zeng
and
D.
Zhang
,
Prog. Energy Combust. Sci.
36
(
3
),
307
326
(
2010
).
33.
S.
Mazloomi
and
N.
Sulaiman
,
Renewable Sustainable Energy Rev.
16
(
6
),
4257
4263
(
2012
).
34.
K.
Mazloomi
,
N. b.
Sulaiman
, and
H.
Moayedi
,
Int. J. Electrochem. Sci.
7
(
4
),
3314
3326
(
2012
).
35.
Y.
Hongru
,
Acta Mech. Sin.
15
(
2
),
97
107
(
1999
).
36.
W.
Stuessy
,
H.-C.
Liu
,
F. K.
Lu
, and
D. R.
Wilson
, AIAA Paper No. 97-0665, 1997.
37.
H.
Nagamatsu
and
E.
Martin
,
J. Appl. Phys.
30
(
7
),
1018
1021
(
1959
).
38.
J.
Li
,
H.
Chen
, and
H.
Yu
,
Shock Waves
22
(
4
),
351
362
(
2012
).
39.
D. G.
Goodwin
,
H. K.
Moffat
, and
R. L.
Speth
, Cantera: An object- oriented software toolkit for chemical kinetics, thermodynamics, and transport processes, Version 2.2.1 (2016), available at http://www.cantera.org.
40.
MATLAB, The MathWorks, Inc., Natick, Massachusetts, USA, 2015.
41.
B.
Schmidt
,
B.
Bobbitt
,
N.
Parziale
, and
J.
Shepherd
, presented at the 29th International Symposium on Shock Waves 1, 2015.
42.
R.
Emrich
and
C.
Curtis
,
J. Appl. Phys.
24
(
3
),
360
363
(
1953
).
43.
G. S.
Settles
,
Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media
(
Springer Science & Business Media
,
2012
).
44.
C. A.
Grimes
,
O. K.
Varghese
, and
S.
Ranjan
,
Light, Water, Hydrogen—The Solar Generation of Hydrogen by Water Photoelectrolysis
(
Springer LLC
,
2008
).
45.
A.
Yuvaraj
and
D.
Santhanaraj
,
Mater. Res.
17
(
1
),
83
87
(
2014
).
You do not currently have access to this content.