Rolling contact wear/fatigue tests on wheel/rail specimens are important to produce wheels and rails of new materials for improved lifetime and performance, which are able to operate in harsh environments and at high rolling speeds. This paper presents a novel non-invasive, all-optical system, based on a high-speed video camera and multiple laser illumination sources, which is able to continuously monitor the dynamics of the specimens used to test wheel and rail materials, in a laboratory test bench. 3D macro-topography and angular position of the specimen are simultaneously performed, together with the acquisition of surface micro-topography, at speeds up to 500 rpm, making use of a fast camera and image processing algorithms. Synthetic indexes for surface micro-topography classification are defined, the 3D macro-topography is measured with a standard uncertainty down to 0.019 mm, and the angular position is measured on a purposely developed analog encoder with a standard uncertainty of 2.9°. The very small camera exposure time enables to obtain blur-free images with excellent definition. The system will be described with the aid of end-cycle specimens, as well as of in-test specimens.

1.
D. F.
Cannon
,
K.-O.
Edel
,
S. L.
Grassie
, and
K.
Sawley
,
Fatigue Fract. Eng. Mater. Struct.
26
,
865
(
2003
).
2.
U.
Zerbst
and
S.
Beretta
,
Eng. Failure Anal.
18
,
534
(
2011
).
3.
M. Ph.
Papaelias
,
C.
Roberts
, and
C. L.
Davis
,
Proc. Inst. Mech. Eng., Part F
222
,
367
(
2008
).
4.
Z.
Liu
,
W.
Li
,
F.
Xue
,
J.
Xiafang
,
B.
Bu
, and
Z.
Yi
,
IEEE Trans. Magn.
51
,
1
(
2015
).
5.
Z.
Li
,
M.
Molodova
,
A.
Núñez
, and
R.
Dollevoet
,
IEEE Trans. Ind. Electron.
62
,
4385
(
2015
).
6.
Z.
Liu
,
F.
Li
,
B.
Huang
, and
G.
Zhang
,
J. Opt. Soc. Am. A
31
,
1721
(
2014
).
7.
Q.
Li
and
S.
Ren
,
IEEE Trans. Instrum. Meas.
61
,
2189
(
2012
).
8.
L.
Jie
,
L.
Siwei
,
L.
Qingyong
,
Z.
Hanqing
, and
R.
Shengwei
, in
IEEE International Symposium on Industrial Electronics (ISIE 2009)
,
Seoul, South Korea
,
5–8 July 2009
(
IEEE
,
2009
), pp.
769
774
.
9.
R.
Stock
and
R.
Pippan
,
Wear
314
,
44
(
2014
).
10.
N.
Bosso
and
N.
Zampieri
,
Shock Vib.
2014
,
1
.
11.
U.
Olofsson
and
T.
Telliskivi
,
Wear
254
,
80
(
2003
).
12.
G.
Zhou
,
C.
He
,
G.
Wen
, and
Q.
Liu
,
Tribol. Int.
91
,
160
(
2015
).
13.
C.
Kammerhofer
,
A.
Hohenwarter
, and
R.
Pippan
,
Wear
316
,
101
(
2014
).
14.
D. I.
Fletcher
and
S.
Lewis
,
Wear
298
,
57
(
2013
).
15.
T.
Makino
,
T.
Kato
, and
K.
Hirakawa
,
Int. J. Fatigue
36
,
68
(
2012
).
16.
M.
Lancini
,
I.
Bodini
,
D.
Vetturi
,
S.
Pasinetti
,
A.
Mazzù
,
L.
Solazzi
,
C.
Petrogalli
, and
M.
Faccoli
,
ACTA IMEKO
4
,
66
(
2015
).
17.
A.
Mazzù
,
L.
Solazzi
,
M.
Lancini
,
C.
Petrogalli
,
A.
Ghidini
, and
M.
Faccoli
,
Wear
342-343
,
22
(
2015
).
18.
G.
Donzella
,
M.
Faccoli
,
A.
Mazzù
,
C.
Petrogalli
, and
R.
Roberti
,
Wear
271
,
408
(
2011
).
19.
J.
Sukuraman
,
S.
Soleimani
,
P.
De Baets
,
V.
Rodriguez
,
K.
Douterloigne
,
W.
Philips
, and
M.
Ando
,
Wear
296
,
702
(
2012
).
20.
G.
Sansoni
,
M.
Trebeschi
, and
F.
Docchio
,
Sensors
9
,
568
(
2009
).
21.
G.
Sansoni
,
P.
Bellandi
, and
F.
Docchio
,
Meas. Sci. Technol.
22
,
075302
(
2011
).
22.
W.
Huang
and
R.
Kovacevic
,
Int. J. Adv. Manuf. Technol.
63
,
235
(
2012
).
23.
R.
Usamentiaga
,
J.
Molleda
, and
D. F.
Garcia
,
Mach. Vision Appl.
23
,
179
(
2012
).
24.
E.
Kayahan
,
H.
Oktem
,
F.
Hacizade
,
H.
Nasibov
, and
O.
Gunogdu
,
Tribol. Int.
43
,
307
(
2010
).
25.
Y.-K.
Fuh
,
K. C.
Hsu
, and
J. R.
Fan
,
Opt. Laser Eng.
50
,
312
(
2012
).
26.
G. A.
Al-Kindi
and
B.
Shirinzadeh
,
Int. J. Mach. Tools Manuf.
47
,
697
(
2007
).
27.
J.
Zhang
,
M.
Korsten
, and
P.
Regtien
, in
Proceedings of XVII IMEKO World Congress
,
Dubrovnik, Croatia
,
22–27 June 2003
(
International Measurement Confederation
,
2003
), pp.
1960
1964
.
28.
Datasheet PROMON 501 available at http://www.aostechnologies.com/.
29.
P.
West
, “
A roadmap for building a machine vision system
,” available at http://www.imagenation.com/,
2005
.
30.
T. B.
Moeslund
,
Introduction to Video and Image Processing—Building Real Systems and Applications
,
Undergraduate Topics in Computer Science
(
Springer Verlag
,
London
,
2012
), p.
103
.
31.
O.
Faugeras
,
Three-Dimensional Computer Vision—A Geometric Point of Viewpoint
(
The MIT Press
,
Cambridge, MA
,
1993
), p.
7
.
32.
J.
Heikkillä
and
O.
Silvén
, in
Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Juan, PR, USA, 17–19 June 1997
(
IEEE
,
1997
), pp.
1106
1112
.
33.
Z.
Zhang
,
IEEE Trans. Pattern Anal. Mach. Intell.
22
,
1330
(
2000
).
34.
JCGM 100:2008 “Evaluation of measurement data—Guide to the expression of uncertainty in measurement,”
2008
.
You do not currently have access to this content.