A method is proposed to extract the electrical data for surface doping profiles of semiconductors in unison with the chemical profile acquired by secondary-ion mass spectrometry (SIMS)—a method we call SIMSAR (secondary-ion mass spectrometry and resistivity). The SIMSAR approach utilizes the inherent sputtering process of SIMS, combined with sequential four-point van der Pauw resistivity measurements, to surmise the active doping profile as a function of depth. The technique is demonstrated for the case of ion-implanted arsenic doping profiles in silicon. Complications of the method are identified, explained, and corrections for these are given. While several techniques already exist for chemical dopant profiling and numerous for electrical profiling, since there is no technique which can measure both electrical and chemical profiles in parallel, SIMSAR has significant promise as an extension of the conventional dynamic SIMS technique, particularly for applications in the semiconductor industry.

1.
H. W.
Werner
,
Surf. Interface Anal.
2
(
2
),
56
(
1980
).
2.
J. A.
Van den Berg
,
D. G.
Armour
,
S.
Zhang
,
S.
Whelan
,
H.
Ohno
,
T.-S.
Wang
,
A. G.
Cullis
,
E. H. J.
Collart
,
R. D.
Goldberg
,
P.
Bailey
, and
T. C. Q.
Noakes
,
J. Vac. Sci. Technol. B
20
,
974
(
2002
).
3.
C. W.
White
,
S. R.
Wilson
,
B. R.
Appleton
, and
F. W.
Young
, Jr.
,
J. Appl. Phys.
51
,
738
(
1980
).
4.
P. M.
Voyles
,
D. A.
Muller
,
J. L.
Grazul
,
P. H.
Citrin
, and
H.-J. L.
Gossmann
,
Nature
416
,
826
(
2002
).
5.
P.
Eyben
,
M.
Xu
,
N.
Duhayon
,
T.
Clarysse
,
S.
Callewaert
, and
W.
Vandervorst
,
J. Vac. Sci. Technol. B
20
,
471
(
2002
).
6.
P.
De Wolf
,
T.
Clarysse
,
W.
Vandervorst
,
L.
Hellemans
,
Ph.
Niedermann
, and
W.
Hänni
,
J. Vac. Sci. Technol. B
16
,
355
(
1998
).
7.
Y.
Huang
and
C. C.
Williams
,
J. Vac. Sci. Technol. B
12
,
369
(
1994
).
8.
C. C.
Williams
,
Annu. Rev. Mater. Sci.
29
,
471
(
1999
).
9.
N. S.
Bennett
,
A. J.
Smith
,
B.
Colombeau
,
R.
Gwilliam
,
N. E. B.
Cowern
, and
B. J.
Sealy
,
Mater. Sci. Eng., B
124
,
305
(
2005
).
10.
D. K.
Schroder
,
Semiconductor Material and Device Characterization
, 3rd ed. (
Wiley-Interscience
,
New York
,
2006
), p.
25
.
11.
T.
Clarysse
,
P.
Eyben
,
B.
Parmentier
,
B.
Van Daele
,
A.
Satta
, and
W.
Vandervorst
,
J. Vac. Sci. Technol. B
26
,
317
(
2008
).
12.
L. J.
van der Pauw
,
Philips Res. Rep.
13
,
1
9
(
1958
).
13.
T.
Clarysse
,
M.
Caymax
,
P.
De Wolf
,
T.
Trenkler
,
W.
Vandervorst
,
J. S.
McMurray
,
J.
Kim
,
C. C.
Williams
,
J. G.
Clark
, and
G.
Neubauer
,
J. Vac. Sci. Technol. B
16
,
394
(
1998
).
14.
HL5900PC Hall Profiler System User Manual 2.0, Accent Technologies,
2001
.
15.
L. H.
Vanamurthy
,
M.
Huang
,
H.
Bakhru
,
T.
Furukawa
,
N.
Berliner
,
J.
Herman
,
Z.
Zhu
,
P.
Ronsheim
, and
B.
Doris
,
J. Vac. Sci. Technol. A
31
,
031403
(
2013
).
16.
W.
Vandervorst
,
H. E.
Maes
, and
R. F.
De Keersmaecker
,
J. Appl. Phys.
56
,
1425
(
1984
).
17.
J.
Ziegler
 et al., SRIM—The Stopping and Range of Ions in Matter. May 2009, http://www.srim.org/.
19.
K.
Wittmaack
and
W.
Wach
,
Nucl. Instrum. Methods
191
(
1
),
327
(
1981
).
You do not currently have access to this content.