Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological developments now allow analog laser stabilization systems to be replaced with digital electronics such as field-programmable gate arrays, which have recently been utilized to develop such locking systems. We have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions. Frequency modulation, lock-in detection, and a proportional-integral-derivative controller are programmed on the field-programmable gate array and only minimal additional components are required to frequency stabilize a laser. The locking system is administered from a host-computer which provides comprehensive, long-distance control through a versatile interface. Various measurements were performed to characterize the system. The linewidth of the locked laser was measured to be 0.7 ± 0.1 MHz with a settling time of 10 ms. The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

1.
C.
Wieman
and
T. W.
Hänsch
,
Phys. Rev. Lett.
36
,
1170
(
1976
).
3.
K.
Overstreet
,
J.
Franklin
, and
J.
Shaffer
,
Rev. Sci. Instrum.
75
,
4749
(
2004
).
4.
G.
Jundt
,
G.
Purves
,
C.
Adams
, and
I.
Hughes
,
Eur. Phys. J. D
27
,
273
(
2003
).
5.
W.
Demtröder
,
Laser Spectroscopy: Basic Concepts and Instrumentation
, 3rd ed. (
Springer
,
Berlin
,
2003
).
6.
G.
Bjorklund
,
M.
Levenson
,
W.
Lenth
, and
C.
Ortiz
,
Appl. Phys. B
32
,
145
(
1983
).
7.
K. B.
MacAdam
,
A.
Steinbach
, and
C.
Wieman
,
Am. J. Phys.
60
,
1098
(
1992
).
8.
C.
Wieman
,
G.
Flowers
, and
S.
Gilbert
,
Am. J. Phys.
63
,
317
(
1995
).
9.
A.
Arnold
,
J.
Wilson
, and
M.
Boshier
,
Rev. Sci. Instrum.
69
,
1236
(
1998
).
10.
A. S.
Mellish
and
A. C.
Wilson
,
Am. J. Phys.
70
,
965
(
2002
).
11.
K.
Singer
,
S.
Jochim
,
M.
Mudrich
,
A.
Mosk
, and
M.
Weidemüller
,
Rev. Sci. Instrum.
73
,
4402
(
2002
).
12.
D. L.
Whitaker
,
A.
Sharma
, and
J. M.
Brown
,
Rev. Sci. Instrum.
77
,
126101
(
2006
).
13.
A.
Restelli
,
R.
Abbiati
, and
A.
Geraci
,
Rev. Sci. Instrum.
76
,
093112
(
2005
).
14.
S. N.
Nikolić
,
V.
Batić
,
B.
Panić
, and
B. M.
Jelenković
,
Rev. Sci. Instrum.
84
,
063108
(
2013
).
15.
A.
Schwettmann
,
J.
Sedlacek
, and
J. P.
Shaffer
,
Rev. Sci. Instrum.
82
,
103103
(
2011
).
16.
Z.
Xu
,
X.
Zhang
,
K.
Huang
, and
X.
Lu
,
Rev. Sci. Instrum.
83
,
093104
(
2012
).
17.
G.
Yang
,
J. F.
Barry
,
E. S.
Shuman
,
M. H.
Steinecker
, and
D.
DeMille
,
J. Instrum.
7
,
P10026
(
2012
).
18.
D.
Leibrandt
and
J.
Heidecker
,
Rev. Sci. Instrum.
86
,
123115
(
2015
).
19.
L.
Ricci
,
M.
Weidemüller
,
T.
Esslinger
,
A.
Hemmerich
,
C.
Zimmermann
,
V.
Vuletic
,
W.
König
, and
T. W.
Hänsch
,
Opt. Commun.
117
,
541
(
1995
).
20.
R.
Drever
,
J. L.
Hall
,
F.
Kowalski
,
J.
Hough
,
G.
Ford
,
A.
Munley
, and
H.
Ward
,
Appl. Phys. B
31
,
97
(
1983
).
21.
The datasheet of the myRIO device is available online at http://www.ni.com/pdf/manuals/376047a.pdf.
22.
See supplementary material at http://dx.doi.org/10.1063/1.4959545 for the source code and a high resolution version of Fig. 3.
23.
Updated source code is available online at http://phys.au.dk/forskning/forskningsomraader/uqgg0/downloads/.
24.

A crossover peak is located between two regular transitions and is a consequence of a specific non-zero velocity class of atoms being simultaneously resonant with the counterpropagating pump and probe beams.

25.
J. G.
Ziegler
and
N. B.
Nichols
,
Trans. ASME
64
,
759
(
1942
).
26.
P. L.
Pedersen
,
M.
Gajdacz
,
F.
Deuretzbacher
,
L.
Santos
,
C.
Klempt
,
J. F.
Sherson
,
A. J.
Hilliard
, and
J. J.
Arlt
,
Phys. Rev. A
89
,
051603
(
2014
).

Supplementary Material

You do not currently have access to this content.