Time-domain thermoreflectance (TDTR) is a pump-probe technique frequently applied to measure the thermal transport properties of bulk materials, nanostructures, and interfaces. One of the limitations of TDTR is that it can only be employed to samples with a fairly smooth surface. For rough samples, artifact signals are collected when the pump beam in TDTR measurements is diffusely scattered by the rough surface into the photodetector, rendering the TDTR measurements invalid. In this paper, we systemically studied the factors affecting the artifact signals due to the pump beam leaked into the photodetector and thus established the origin of the artifact signals. We find that signals from the leaked pump beam are modulated by the probe beam due to the phase rotation induced in the photodetector by the illumination of the probe beam. As a result of the modulation, artifact signals due to the leaked pump beam are registered in TDTR measurements as the out-of-phase signals. We then developed a simple approach to eliminate the artifact signals due to the leaked pump beam. We verify our leak-pump correction approach by measuring the thermal conductivity of a rough InN sample, when the signals from the leaked pump beam are significant. We also discuss the advantages of our new method over the two-tint approach and its limitations. Our new approach enables measurements of the thermal conductivity of rough samples using TDTR.

1.
D. G.
Cahill
,
Rev. Sci. Instrum.
75
,
5119
(
2004
).
2.
A. J.
Schmidt
,
X. Y.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
114902
(
2008
).
3.
Y. K.
Koh
,
S. L.
Singer
,
W.
Kim
,
J. M. O.
Zide
,
H.
Lu
,
D. G.
Cahill
,
A.
Majumdar
, and
A. C.
Gossard
,
J. Appl. Phys.
105
,
054303
(
2009
).
4.
C.
Chiritescu
,
D. G.
Cahill
,
N.
Nguyen
,
D.
Johnson
,
A.
Bodapati
,
P.
Keblinski
, and
P.
Zschack
,
Science
315
,
351
(
2007
).
5.
X.
Zheng
,
D. G.
Cahill
,
P.
Krasnochtchekov
,
R. S.
Averback
, and
J. C.
Zhao
,
Acta Mater.
55
,
5177
(
2007
).
6.
Z.
Guo
,
A.
Verma
,
X.
Wu
,
F.
Sun
,
A.
Hickman
,
T.
Masui
,
A.
Kuramata
,
M.
Higashiwaki
,
D.
Jena
, and
T.
Luo
,
Appl. Phys. Lett.
106
,
111909
(
2015
).
7.
J.
Liu
,
B.
Yoon
,
E.
Kuhlmann
,
M.
Tian
,
J.
Zhu
,
S. M.
George
,
Y.
Lee
, and
R.
Yang
,
Nano Lett.
13
,
5594
(
2013
).
8.
A. I.
Persson
,
Y. K.
Koh
,
D. G.
Cahill
,
L.
Samuelson
, and
H.
Linke
,
Nano Lett.
9
,
4484
(
2009
).
9.
B.
Saha
,
Y. R.
Koh
,
J.
Comparan
,
S.
Sadasivam
,
J. L.
Schroeder
,
M.
Garbrecht
,
A.
Mohammed
,
J.
Birch
,
T.
Fisher
,
A.
Shakouri
, and
T. D.
Sands
,
Phys. Rev. B
93
,
045311
(
2016
).
10.
E.
Ziade
,
J.
Yang
,
G.
Brummer
,
D.
Nothern
,
T.
Moustakas
, and
A. J.
Schmidt
,
Appl. Phys. Lett.
107
,
091605
(
2015
).
11.
P. E.
Hopkins
,
M.
Baraket
,
E. V.
Barnat
,
T. E.
Beechem
,
S. P.
Kearney
,
J. C.
Duda
,
J.
Robinson
, and
S.
Walton
,
Nano Lett.
12
,
590
(
2012
).
12.
Y. K.
Koh
,
M. H.
Bae
,
D. G.
Cahill
, and
E.
Pop
,
Nano Lett.
10
,
4363
(
2010
).
13.
M. D.
Losego
,
M. E.
Grady
,
N. R.
Sottos
,
D. G.
Cahill
, and
P. V.
Braun
,
Nat. Mater.
11
,
502
(
2012
).
14.
B.
Huang
and
Y. K.
Koh
,
Carbon
105
,
268
(
2016
).
15.
Y. X.
Wang
,
J. Y.
Park
,
Y. K.
Koh
, and
D. G.
Cahill
,
J. Appl. Phys.
108
,
043507
(
2010
).
16.
K.
Kang
,
Y. K.
Koh
,
C.
Chiritescu
,
X.
Zheng
, and
D. G.
Cahill
,
Rev. Sci. Instrum.
79
,
114901
(
2008
).
17.
A.
Schmidt
,
M.
Chiesa
,
X. Y.
Chen
, and
G.
Chen
,
Rev. Sci. Instrum.
79
,
064902
(
2008
).
18.
P.
Jiang
,
B.
Huang
, and
Y. K.
Koh
, e-print arXiv:1511.04852 (
2015
).
19.
C. S.
Gallinat
,
G.
Koblmüller
,
F.
Wu
, and
J. S.
Speck
,
J. Appl. Phys.
107
,
053517
(
2010
).
20.
C.
Thomsen
,
H. T.
Grahn
,
H. J.
Maris
, and
J.
Tauc
,
Phys. Rev. B
34
,
4129
(
1986
).
21.
W. P.
Hsieh
and
D. G.
Cahill
,
J. Appl. Phys.
109
,
113520
(
2011
).
22.
J.
Ju
,
B.
Sun
,
G.
Haunschild
,
B.
Loitsch
,
B.
Stoib
,
M. S.
Brandt
,
M.
Stutzmann
,
Y. K.
Koh
, and
G.
Koblmüller
,
AIP Adv.
6
,
045216
(
2016
).
23.
A. X.
Levander
,
T.
Tong
,
K. M.
Yu
,
J.
Suh
,
D.
Fu
,
R.
Zhang
,
H.
Lu
,
W. J.
Schaff
,
O.
Dubon
,
W.
Walukiewicz
,
D. G.
Cahill
, and
J.
Wu
,
Appl. Phys. Lett.
98
,
012108
(
2011
).
24.
R. W.
Powell
,
C. Y.
Ho
, and
P. E.
Liley
, “
Thermal conductivity of selected materials
,” U.S. Department of Commerce, National Bureau of Standards,
1966
.
You do not currently have access to this content.