Bose-Einstein-Condensates (BECs) can be used as a very sensitive tool for experiments on fundamental questions in physics like testing the equivalence principle using matter wave interferometry. Since the sensitivity of these experiments in ground-based environments is limited by the available free fall time, the QUANTUS project started to perform BEC interferometry experiments in micro-gravity. After successful campaigns in the drop tower, the next step is a space-borne experiment. The MAIUS-mission will be an atom-optical experiment that will show the feasibility of experiments with ultra-cold quantum gases in microgravity in a sounding rocket. The experiment will create a BEC of 10587Rb-atoms in less than 5 s and will demonstrate application of basic atom interferometer techniques over a flight time of 6 min. The hardware is specifically designed to match the requirements of a sounding rocket mission. Special attention is thereby spent on the appropriate magnetic shielding from varying magnetic fields during the rocket flight, since the experiment procedures are very sensitive to external magnetic fields. A three-layer magnetic shielding provides a high shielding effectiveness factor of at least 1000 for an undisturbed operation of the experiment. The design of this magnetic shielding, the magnetic properties, simulations, and tests of its suitability for a sounding rocket flight are presented in this article.

1.
B.
Altschul
 et al, “
Quantum tests of the Einstein equivalence principle with the STE–QUEST space mission
,”
Adv. Space Res.
55
,
501
524
(
2015
).
2.
W.
Ketterle
, “
Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser
,”
Rev. Mod. Phys.
74
,
1131
1151
(
2002
).
3.
J. R.
Anglin
and
W.
Ketterle
, “
Bose-Einstein condensation of atomic gases
,”
Nature
416
,
211
218
(
2002
).
4.
See http://www.iqo.uni-hannover.de/quantus.html for QUANTUS–Quantum gases in micro-gravity; accessed 22 April 2015.
5.
T.
van Zoest
 et al, “
Bose-Einstein condensation in microgravity
,”
Science
328
,
1540
1543
(
2010
).
6.
H.
Müntinga
 et al, “
Interferometry with Bose-Einstein condensates in microgravity
,”
Phys. Rev. Lett.
110
,
093602
(
2013
).
7.
See http://www.zarm.uni-bremen.de for official website of ZARM, Inc.; accessed 13 March 2015.
8.
J.
Rudolph
 et al, “
A high-flux BEC source for mobile atom interferometers
,”
New J. Phys.
17
,
065001
(
2015
).
9.
MAIUS Team, “
A BEC-based atom interferometer for the use on sounding rockets
” (unpublished).
10.
Ph.
Laurent
 et al, “
Design of the cold atom PHARAO space clock and initial test results
,”
Appl. Phys. B
84
,
683
(
2006
).
11.
A.
Öttl
,
S.
Ritter
,
M.
Köhl
, and
T.
Esslinger
, “
Hybrid apparatus for Bose-Einstein condensation and cavity quantum electrodynamics: Single atom detection in quantum degenerate gases
,”
Rev. Sci. Instrum.
77
,
063118
(
2006
).
12.
T.
van Zoest
, “
Realisierung erster quantenentarteter gase unter schwerelosigkeit
,” Ph.D. thesis,
University of Hanover
, Germany, 2008.
13.
W.
Lewoczko-Adamczyk
, “
Bose-Einstein condensation in microgravity
,” Ph.D. thesis,
University of Berlin
, Germany, 2007.
14.
S. T.
Seidel
, “
Eine quelle für die interferometrie mit Bose-Einstein-kondensaten auf höhenforschungsraketen
,” Ph.D. thesis,
University of Hanover
, Germany, 2014.
15.
D. A.
Steck
, “
Rubidium 87 D Line Data
,” available online at http://steck.us/alkalidata/ (revision 2.1.4, 23 December 2010); accessed 05 June 2015.
16.
C.
Schubert
 et al, “
Differential atom interferometry with 87Rb and 85 Rb for testing the UFF in STE-QUEST
,” preprint arXiv:1312.5963v1 (
2013
).
17.
C. J.
Dedman
,
R. G.
Dall
,
L. J.
Byron
, and
A. G.
Truscott
, “
Active cancellation of stry magnetic fields in a Bose-Einstein condensation experiment
,”
Rev. Sci. Instrum.
78
,
024703
(
2007
).
18.
J.
Ettl
, Post Flight Report TEXUS 42, MORABA, 2006.
19.
E. A.
Burt
and
C. R.
Ekstrom
, “
Optimal three-layer cylindrical magnetic shield sets for scientific applications
,”
Rev. Sci. Instrum.
73
,
2699
(
2002
).
20.
T. J.
Sumner
,
J. M.
Pendlebury
, and
K. F.
Smith
, “
Convectional magnetic shielding
,”
J. Phys. D: Appl. Phys.
20
,
1095
(
1987
).
21.
B. R.
Patla
,
J. D.
Phillips
, and
R. D.
Reasenberg
, “
Reduction of magnetic pertubation for SR-POEM
,” e-print arXiv:1406.2934 [gr-qc,physics:physics] (
2014
).
22.
W. G.
Wadey
, “
Magnetic shielding with multiple cylindrical shells
,”
Rev. Sci. Instrum.
27
,
910
916
(
1956
).
23.
A. J.
Mager
, “
Magnetic shields
,”
IEEE Trans. Magn.
6
,
67
75
(
1970
).
24.
E.
Baum
and
J.
Bork
, “
Systematic design of magnetic shields
,”
J. Magn. Magn. Mater.
101
,
69
74
(
1991
).
25.
D.
Filistovich
, Sekels GmbH, private communication (
2012
).
26.
See http://www.sekels.de/en/magnetische-abschirmungen/alloys/for data sheet of μ-METALL® from Sekels GmbH; accessed 22 April 2015.
27.
See http://www.sekels.de/de/magnetische-abschirmungen/theoretische-grundlagen/ for brochure of “Magnetische Abschirmungen” by Sekels GmbH; accessed 29 January 2016.
28.
See http://www.ansys.com for official website of ANSYS, Inc.; accessed 13 March 2015.
29.
J.
Grosse
, “
Thermal and mechanical design and simulation for the first high precision quantum optics experiment on a sounding rocket
,” Ph.D. thesis,
University of Bremen
, Germany), (unpublished).
30.
See http://www.meda.com for official website of MEDA, Inc.; accessed 13 March 2015.
31.
FVM400 Vector Magnetometer Instruction Manual, MEDA, Inc., 2005.
32.
See http://www.zarm-technik.de for official website of ZARM Technik AG; accessed 13 March 2015.
33.
J.
Ettl
and
E.
de Barros
, “
Vibration evaluation of the first flight of the VSB 30
” (
2005
).
34.
See https://www.zarm.uni-bremen.de/test-center/test-labs/vibration-test-lab.html for website of the shaker facility at ZARM; accessed 07 April 2015.
35.
A.
Milke
 et al, “
Atom interferometry in space: Thermal management and magnetic shielding
,”
Rev. Sci. Instrum.
85
,
083105
(
2014
).
36.
T.
Schuldt
 et al, “
Design of a dual species atom interferometer for space
,”
Exp. Astron.
39
,
167
(
2015
).
37.
D. N.
Aguilera
 et al, “
STE-QUEST–test of the universality of free fall using cold atom interferometry
,”
Classical Quantum Gravity
31
,
115010
(
2014
).
You do not currently have access to this content.