In this paper, we present in detail the design, both electromagnetic and mechanical, the fabrication, and the test of the first prototype of a Scanning Microwave Microscope (SMM) suitable for a two-port transmission measurement, recording, and processing the high frequency transmission scattering parameter S21 passing through the investigated sample. The S21 toolbox is composed by a microwave emitter, placed below the sample, which excites an electromagnetic wave passing through the sample under test, and is collected by the cantilever used as the detector, electrically matched for high frequency measurements. This prototype enhances the actual capability of the instrument for a sub-surface imaging at the nanoscale. Moreover, it allows the study of the electromagnetic properties of the material under test obtained through the measurement of the reflection (S11) and transmission (S21) parameters at the same time. The SMM operates between 1 GHz and 20 GHz, current limit for the microwave matching of the cantilever, and the high frequency signal is recorded by means of a two-port Vector Network Analyzer, using both contact and no-contact modes of operation, the latter, especially minded for a fully nondestructive and topography-free characterization. This tool is an upgrade of the already established setup for the reflection mode S11 measurement. Actually, the proposed setup is able to give richer information in terms of scattering parameters, including amplitude and phase measurements, by means of the two-port arrangement.

2.
A.
Briggs
and
O.
Kolosov
,
Acoustic Microscopy
, 2nd ed. (
OUP
,
Oxford
,
2009
).
3.
P.
Vitry
,
E.
Bourillot
,
C.
Plassard
,
Y.
Lacroute
,
L.
Tetard
, and
E.
Lesniewska
, “
Advances in quantitative nanoscale subsurface imaging by mode-synthesizing atomic force microscopy
,”
Appl. Phys. Lett.
105
(
5
),
053110
(
2014
).
4.
G.
Stan
,
S. D.
Solares
,
B.
Pittenger
,
N.
Erina
, and
C.
Su
, “
Nanoscale mechanics by tomographic contact resonance atomic force microscopy
,”
Nanoscale
6
(
2
),
962
969
(
2014
).
5.
G.
Verbiest
,
T.
Oosterkamp
, and
M.
Rost
, “
Subsurface-AFM: Sensitivity to the heterodyne signal
,”
Nanotechnology
24
(
36
),
365701
(
2013
).
6.
A.
Imtiaz
,
T.
Mitchell Wallis
, and
P.
Kabos
, “
Near-field scanning microwave Microscopy: An emerging research tool for nanoscale metrology
,”
IEEE Microwave Mag.
15
,
52
64
(
2014
).
7.
G.
Gramse
,
E.
Brinciotti
,
A.
Lucibello
,
S. B.
Patil
,
M.
Kasper
,
C.
Rankl
,
R.
Giridharagopal
,
P.
Hinterdorfer
,
R.
Marcelli
, and
F.
Kienberger
, “
Quantitative sub-surface and non-contact imaging using scanning microwave microscopy
,”
Nanotechnology
26
(
13
),
135701
(
2015
).
8.
B. T.
Rosner
and
D. W.
van der Weide
, “
High-frequency near-field microscopy
,”
Rev. Sci. Instrum.
73
(
7
),
2505
2525
(
2002
).
9.
Keysight Scanning Microwave Microscopy (SMM) Mode: Highly Sensitive Imaging Mode for Compound, Calibrated Electrical and Spatial Measurements, 2014, available online at http://literature.cdn.keysight.com/litweb/pdf/5989-8817EN.pdf.
10.
A.
Karbassi
,
D.
Ruf
,
A.
Bettermann
,
C.
Paulson
,
D. W.
van der Weide
,
H.
Tanbakuchi
, and
R.
Stancliff
, “
Quantitative scanning near-field microwave microscopy for thin film dielectric constant measurement
,”
Rev. Sci. Instrum.
79
(
9
),
094706
(
2008
).
11.
G. M.
Sardi
,
A.
Lucibello
,
M.
Kasper
,
G.
Gramse
,
E.
Proietti
,
F.
Kienberger
, and
R.
Marcelli
, “
Optimization of the imaging response of scanning microwave microscopy measurements
,”
Appl. Phys. Lett.
107
(
3
),
033107
(
2015
).
12.
L.
Michalas
,
A.
Lucibello
,
G.
Badino
,
C.
Joseph
,
E.
Brinciotti
,
F.
Kienberger
,
E.
Proietti
, and
R.
Marcelli
, “
Scanning microwave microscopy for nanoscale characterization of semiconductors: De-embedding reflection contact mode measurements
,” in
45th European Microwave Conference (EuMC)
(
2015
).
13.
M.
Kasper
,
G.
Gramse
,
J.
Hoffmann
,
C.
Gaquiere
,
R.
Feger
,
A.
Stelzer
,
J.
Smoliner
, and
F.
Kienberger
, “
Metal-oxide-semiconductor capacitors and Schottky diodes studied with scanning microwave microscopy at 18 GHz
,”
J. Appl. Phys.
116
(
18
),
184301
(
2014
).
14.
X.
Wu
and
O. M.
Ramahi
, “
Near-field scanning microwave microscopy for detection of subsurface biological anomalies
,” in
Antennas and Propagation Society International Symposium
(
IEEE
,
2004
).
15.
Y. J.
Oh
,
H.-P.
Huber
,
M.
Hochleitner
,
M.
Duman
,
B.
Bozna
,
M.
Kastner
,
F.
Kienberger
, and
P.
Hinterdorfer
, “
High-frequency electromagnetic dynamics properties of THP1 cells using scanning microwave microscopy
,”
Ultramicroscopy
111
(
11
),
1625
1629
(
2011
).
16.
J.
Park
,
S.
Hyun
,
A.
Kim
,
T.
Kim
, and
K.
Char
, “
Observation of biological samples using a scanning microwave microscope
,”
Ultramicroscopy
102
(
2
),
101
106
(
2005
).
17.
M.
Farina
,
A.
Di Donato
,
T.
Monti
,
T.
Pietrangelo
,
T.
Da Ros
,
A.
Turco
,
G.
Venanzoni
, and
A.
Morini
, “
Tomographic effects of near-field microwave microscopy in the investigation of muscle cells interacting with multi-walled carbon nanotubes
,”
Appl. Phys. Lett.
101
(
20
),
203101
(
2012
).
18.
M. C.
Biagi
,
R.
Fabregas
,
G.
Gramse
,
M.
Van Der Hofstadt
,
A.
Juárez
,
F.
Kienberger
,
L.
Fumagalli
, and
G.
Gomila
, “
Nanoscale electric permittivity of single bacterial cells at gigahertz frequencies by scanning microwave Microscopy
,”
ACS Nano
10
(
1
),
280
288
(
2016
).
19.
S. M.
Anlage
,
V. V.
Talanov
, and
A. R.
Schwartz
, “
Principles of near-field microwave microscopy
,” in
Scanning Probe Microscopy
(
Springer
,
2007
), pp.
215
253
.
20.
A.
Oladipo
,
A.
Lucibello
,
M.
Kasper
,
S.
Lavdas
,
G.
Sardi
,
E.
Proietti
,
F.
Kienberger
,
R.
Marcelli
, and
N.
Panoiu
, “
Analysis of a transmission mode scanning microwave microscope for subsurface imaging at the nanoscale
,”
Appl. Phys. Lett.
105
(
13
),
133112
(
2014
).
21.
A.
Imtiaz
and
S. M.
Anlage
, “
Effect of tip geometry on contrast and spatial resolution of the near-field microwave microscope
,”
J. Appl. Phys.
100
(
4
),
044304
(
2006
).
22.
C. A.
Balanis
,
Antenna Theory: Analysis and Design
(
John Wiley & Sons
,
2005
), Vol.
1
.
23.
M.
Ettorre
,
M.
Casaletti
,
G.
Valerio
,
R.
Sauleau
,
L.
Le Coq
,
S. C.
Pavone
, and
M.
Albani
, “
On the near-field shaping and focusing capability of a radial line slot array
,”
IEEE Trans. Antennas Propag.
62
(
4
),
1991
1999
(
2014
).
24.
M. F.
Imani
and
A.
Grbic
, “
Generating evanescent Bessel beams using near-field plates
,”
IEEE Trans. Antennas Propag.
60
(
7
),
3155
3164
(
2012
).
25.
SU-8 2000 permanent Epoxy Resists, available online at http://www.microchem.com/Prod-SU82000.htm.
You do not currently have access to this content.