We report on a novel device for particle acceleration based on elevation of the potential energy of beam pulses. This so-called energy elevator is particularly beneficial if both the particle source and the sample have to be near ground potential due to experimental constraints. We applied this new technique to enable depth dependent measurements of re-emitted positrons using the surface spectrometer at the NEPOMUC positron beam facility. First, a two-stage bunching system is used to generate positron pulses with a repetition rate of 5 MHz and a duration of 1.663(5) ns before their energy is raised to several keV. The whole system was shown to work with an exceptional efficiency of 88%. We demonstrated the usability of our setup by investigating the positron re-emission spectra of Ni and Pd as function of positron implantation energy. For Ni the positron work function could be determined to be Φ Ni + = 1.4(2) eV . In addition, as predicted by theory, our experimental findings imply a positive positron work function for Pd.

1.
C.
Piochacz
and
C.
Hugenschmidt
,
J. Phys.: Conf. Ser.
443
,
012093
(
2013
).
2.
D. A.
Cooke
,
G.
Barandun
,
S.
Vergani
,
B.
Brown
,
A.
Rubbia
, and
P.
Crivelli
,
J. Phys. B: At., Mol. Opt. Phys.
49
,
014001
(
2016
).
3.
C.
Hugenschmidt
,
C.
Piochacz
,
M.
Reiner
, and
K.
Schreckenbach
,
New J. Phys.
14
,
055027
(
2012
).
4.
S.
Zimnik
,
F.
Lippert
, and
C.
Hugenschmidt
, in
Proceedings, 13th International Workshop on Slow Positron Beam Techniques and Applications (SLOPOS13)
[
J. Phys.: Conf. Ser.
505
,
012003
(
2014
)].
5.
A.
Weiss
,
R.
Mayer
,
M.
Jibaly
,
C.
Lei
,
D.
Mehl
, and
K. G.
Lynn
,
Phys. Rev. Lett.
61
,
2245
(
1988
).
6.
C.
Hugenschmidt
,
B.
Straßer
, and
K.
Schreckenbach
,
Appl. Surf. Sci.
194
,
283
(
2002
).
7.
G.
Fletcher
,
J. L.
Fry
, and
P. C.
Pattnaik
,
Phys. Rev. B
27
,
3987
(
1983
).
8.
P.
Sperr
,
W.
Egger
,
G.
Kögel
,
G.
Dollinger
,
C.
Hugenschmidt
,
R.
Repper
, and
C.
Piochacz
,
Appl. Surf. Sci.
255
,
35
(
2008
).
9.
C.
Piochacz
,
W.
Egger
,
C.
Hugenschmidt
,
G.
Kögel
,
K.
Schreckenbach
,
P.
Sperr
, and
G.
Dollinger
,
Phys. Status Solidi C
4
,
4028
(
2007
).
10.
R.
Suzuki
,
Y.
Kobayashi
,
T.
Mikado
,
H.
Ohgaki
,
M.
Chiwaki
,
T.
Yamazaki
, and
T.
Tomimasu
,
Jpn. J. Appl. Phys.
30
,
L532
(
1991
).
11.
K.
Fallström
and
T.
Laine
,
Appl. Surf. Sci.
149
,
44
(
1999
).
12.
A. F.
Makhov
,
Sov. Phys. Solid State
2
,
1934
(
1961
).
13.
R.
Krause-Rehberg
and
H. S.
Leipner
,
Positron Annihilation in Semiconductors
(
Springer
,
Berlin, Heidelberg, New York
,
1999
).
14.
R. M.
Nieminen
, in
Positron Beams and Their Applications
, edited by
P. G.
Coleman
(
World Scientific
,
Singapore
,
2000
), Chap. 4, pp.
97
128
.
15.
P. J.
Schultz
and
K. G.
Lynn
,
Rev. Mod. Phys.
60
,
701
(
1988
).
16.
D. A.
Fischer
,
K. G.
Lynn
, and
D. W.
Gidley
,
Phys. Rev. B
33
,
4479
(
1986
).
17.
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
(
CRC Press
,
2004
), pp. 12-130.
18.
P. G.
Coleman
,
A.
Goodyear
, and
A. P.
Knights
,
AIP Conf. Proc.
303
,
218
(
1994
).
19.
P. G.
Coleman
,
L.
Albrecht
,
K. O.
Jensen
, and
A. B.
Walker
,
J. Phys.: Condens. Matter
4
,
10311
(
1992
).
20.
J.
Lahtinen
and
A.
Vehanen
,
Catal. Lett.
8
,
67
(
1991
).
21.
D.
Yamashita
and
A.
Ishizaki
,
Appl. Surf. Sci.
363
,
240
(
2016
).
You do not currently have access to this content.