One of the main goals in catalysis is the characterization of solid/gas interfaces in a reaction environment. The electronic structure and chemical composition of surfaces become heavily influenced by the surrounding environment. However, the lack of surface sensitive techniques that are able to monitor these modifications under high pressure conditions hinders the understanding of such processes. This limitation is known throughout the community as the “pressure gap.” We have developed a novel experimental setup that provides chemical information on a molecular level under atmospheric pressure and in presence of reactive gases and at elevated temperatures. This approach is based on separating the vacuum environment from the high-pressure environment by a silicon nitride grid—that contains an array of micrometer-sized holes—coated with a bilayer of graphene. Using this configuration, we have investigated the local electronic structure of catalysts by means of photoelectron spectroscopy and in presence of gases at 1 atm. The reaction products were monitored online by mass spectrometry and gas chromatography. The successful operation of this setup was demonstrated with three different examples: the oxidation/reduction reaction of iridium (noble metal) and copper (transition metal) nanoparticles and with the hydrogenation of propyne on Pd black catalyst (powder).

1.
J. J.
Berzelius
,
Annual Report on Progress in Physics and Chemistry [Årsberättelsen om Framsteg i Fysik och Kemi]
(
Royal Swedish Academy of Sciences
,
Stockholm, Sweden
,
1985
).
2.
C. N.
Satterfield
,
Heterogeneous Catalysis in Industrial Practice
, 2nd ed. (
McGraw Hill Book Co.
,
1991
).
3.
N.
Yamazoe
,
Sens. Actuators, B
5
(
1
),
7
19
(
1991
).
4.
E. J.
Henley
,
J. D.
Seader
, and
D. K.
Roper
,
Separation Process Principles
(
Wiley
,
2011
).
5.
L.
Carrette
,
K. A.
Friedrich
, and
U.
Stimming
,
Fuel Cells
1
(
1
),
5
39
(
2011
).
6.
C. H.
Wong
and
G. M.
Whitesides
,
Enzymes in Synthetic Organic Chemistry
(
Academic Press
,
1994
), Vol.
12
.
7.
R.
Schlögl
,
Angew. Chem., Int. Ed.
50
(
29
),
6424
6426
(
2011
).
8.
P.
Stoltze
and
J. K.
Nørskov
,
Phys. Rev. Lett.
55
(
22
),
2502
(
1985
).
9.
D. F.
Ogletree
,
H.
Bluhm
,
G.
Lebedev
,
C. S.
Fadley
,
Z.
Hussain
, and
M.
Salmeron
,
Rev. Sci. Instrum.
73
(
11
),
3872
3877
(
2002
).
10.
S.
Kaya
,
H.
Ogasawara
,
L. A.
Näslund
,
J. O.
Forsell
,
H. S.
Casalongue
,
D. J.
Miller
, and
A.
Nilsson
,
Catal. Today
205
,
101
105
(
2013
).
11.
S.
Axnanda
,
E. J.
Crumlin
,
B.
Mao
,
S.
Rani
,
R.
Chang
,
P. G.
Karlsson
,
M. O. M.
Edwards
,
M.
Lundqvist
,
R.
Moberg
,
P. N.
Ross
,
Z.
Husssain
, and
Z.
Liu
,
Sci. Rep.
5
,
9788
(
2015
).
12.
A.
Knop-Gericke
,
M.
Hävecker
,
T.
Neisius
, and
T.
Schedel-Niedrig
,
Nucl. Instrum. Methods Phys. Res., Sect. A
406
(
2
),
311
322
(
1998
).
13.
J. J.
Velasco-Velez
,
C. H.
Wu
,
T. A.
Pascal
,
L.
Wan
,
J.
Guo
,
D.
Predergast
, and
M.
Salmeron
,
Science
346
(
6211
),
831
834
(
2014
).
14.
K.
Siegbahn
,
Electron Spectroscopy for Atoms, Molecules and Condensed Matter
(
Uppsala University: Fysiska Institutionen
,
Sweden
,
1981
).
15.
J. J.
Velasco-Velez
,
V.
Pfeifer
,
M.
Hävecker
,
R. S.
Weatherup
,
R.
Arrigo
,
C.-H.
Chuang
,
E.
Stotz
,
G.
Weinberg
,
R.
Schlögl
, and
A.
Knop-Gericke
,
Angew. Chem., Int. Ed.
54
(
48
),
14554
14558
(
2015
).
17.
C.
Heine
,
M.
Hävecker
,
E.
Stotz
,
F.
Rosowski
,
A.
Knop-Gericke
,
A.
Trunschke
,
M.
Eichelbaum
, and
R.
Schlögl
,
J. Phys. Chem.
118
,
20405
(
2014
).
18.
See supplementary material at http://dx.doi.org/10.1063/1.4951724 for the leak test and for the element depth profile obtained at different KEs.
19.
A.
Kolmakov
,
L.
Gregoratti
,
M.
Kiskinova
, and
S.
Günther
,
Top. Catal.
59
,
448
468
(
2016
).
20.
C. S.
Fadley
and
D. A.
Shirley
,
J. Res. Natl. Bur. Stand., Sect. A
74
,
543
(
1970
).
21.
G.
Vlaic
,
J. C. J.
Bart
,
W.
Cavigiolo
, and
S.
Mobilo
,
Chem. Phys. Lett.
76
(
3
),
453
459
(
1980
).
22.
K.
Noack
,
H.
Zbinden
, and
R.
Schlögl
,
Catal. Lett.
4
(
2
),
145
155
(
1990
).
23.
D.
Teschner
,
J.
Borsodi
,
A.
Wootsch
,
Z.
Révay
,
M.
Hävecker
,
A.
Knop-Gericke
,
S. D.
Jackson
, and
R.
Schlögl
,
Science
320
(
5872
),
86
89
(
2008
).

Supplementary Material

You do not currently have access to this content.