The application of advanced error-separating shearing techniques to the precise calibration of autocollimators with Small Angle Generators (SAGs) was carried out for the first time. The experimental realization was achieved using the High Precision Small Angle Generator (HPSAG) of TUBITAK UME under classical dimensional metrology laboratory environmental conditions. The standard uncertainty value of 5 mas (24.2 nrad) reached by classical calibration method was improved to the level of 1.38 mas (6.7 nrad). Shearing techniques, which offer a unique opportunity to separate the errors of devices without recourse to any external standard, were first adapted by Physikalisch-Technische Bundesanstalt (PTB) to the calibration of autocollimators with angle encoders. It has been demonstrated experimentally in a clean room environment using the primary angle standard of PTB (WMT 220). The application of the technique to a different type of angle measurement system extends the range of the shearing technique further and reveals other advantages. For example, the angular scales of the SAGs are based on linear measurement systems (e.g., capacitive nanosensors for the HPSAG). Therefore, SAGs show different systematic errors when compared to angle encoders. In addition to the error-separation of HPSAG and the autocollimator, detailed investigations on error sources were carried out. Apart from determination of the systematic errors of the capacitive sensor used in the HPSAG, it was also demonstrated that the shearing method enables the unique opportunity to characterize other error sources such as errors due to temperature drift in long term measurements. This proves that the shearing technique is a very powerful method for investigating angle measuring systems, for their improvement, and for specifying precautions to be taken during the measurements.

1.
F.
Siewert
, “
Metrology, mirrors and gratings—Advances and challenges in synchrotron optics
,”
J. Phys.: Conf. Ser.
425
,
152001
(
2013
).
2.
R. D.
Geckeler
,
I.
Weingartner
,
A.
Just
, and
R.
Probst
, “
Use and traceable calibration of autocollimators for ultra-precise measurement of slope and topography
,”
Proc. SPIE
4401
,
184
195
(
2001
).
3.
F.
Siewert
,
T.
Noll
,
T.
Schlegel
,
T.
Zeschke
, and
H.
Lammert
, “
The nanometer optical component measuring machine: A new sub-nm topography measuring device for x-ray optics at BESSY
,”
AIP Conf. Proc.
705
,
847
850
(
2004
).
4.
S. G.
Alcock
,
K. J. S.
Sawhney
,
S.
Scott
,
U.
Pedersen
,
R.
Walton
,
F.
Siewert
,
T.
Zeschke
,
T.
Noll
, and
H.
Lammert
, “
The diamond-NOM: A non-contact profiler capable of characterizing optical figure error with sub-nm repeatability
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
616
,
224
228
(
2010
).
5.
J.
Qian
,
J.
Sulivan
,
M.
Erdmann
,
A.
Khounsary
, and
L.
Assoufid
, “
Performance of the APS optical slope measuring system
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
710
,
48
(
2013
).
6.
M.
Idir
,
K.
Kaznatcheev
,
S. N.
Qian
, and
R.
Conley
, “
Current status of the NSLS-II optical metrology laboratory
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
710
,
17
(
2013
).
7.
V. V.
Yashchuk
,
S.
Barber
,
E. E.
Domning
,
J. L.
Kirschman
,
G. Y.
Morrison
,
B. V.
Smith
,
F.
Siewert
,
T.
Zeschke
,
R.
Geckeler
, and
A.
Just
, “
Sub-microradian surface slope metrology with the ALS developmental long trace profiler
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
616
,
212
223
(
2010
).
8.
G.
Ehret
,
M.
Schulz
,
M.
Stavridis
, and
C.
Elster
, “
Deflectometric systems for absolute flatness measurements at PTB
,”
Meas. Sci. Technol.
23
,
094007
(
2012
).
9.
G.
Ehret
,
M.
Schulz
,
M.
Baier
, and
A.
Fitzenreiter
, “
Optical measurement of absolute flatness with the deflectometric measurement systems at PTB
,”
J. Phys.: Conf. Ser.
425
,
152016
(
2013
).
10.
R. D.
Geckeler
, “
Error minimization in high-accuracy scanning deflectometry
,”
Proc. SPIE
6293
,
62930O
(
2006
).
11.
R. D.
Geckeler
and
A.
Just
, “
Distance dependent influences on angle metrology with autocollimators in deflectometry
,”
Proc. SPIE
7077
,
70770B
(
2008
).
12.
R. D.
Geckeler
and
A.
Just
, “
Optimized use and calibration of autocollimators in deflectometry
,”
Proc. SPIE
6704
,
670407
(
2007
).
13.
R. D.
Geckeler
,
A.
Just
,
M.
Krause
, and
V. V.
Yashchuk
, “
Autocollimators for deflectometry: Current status and future progress
,”
Nucl. Instrum. Methods Phys. Res., Sect. A
616
,
140
146
(
2010
).
14.
R. D.
Geckeler
,
M.
Krause
,
A.
Just
,
O.
Kranz
, and
H.
Bosse
, “
New frontiers in angle metrology at the PTB
,”
Measurement
73
,
231
238
(
2015
).
15.
JRP SIB58 Angles
, Angle Metrology 2015 website http://www.anglemetrology.com/.
16.
T.
Yandayan
,
R.
Geckeler
, and
F.
Siewert
, “
Pushing the limits—Latest developments in angle metrology for the inspection of ultra-precise synchrotron optics
,”
Proc. SPIE
9206
,
92060F
(
2014
).
17.
T.
Yandayan
,
R.
Geckeler
,
M.
Pisani
,
E.
Prieto
, and
F.
Siewert
, “
Recent developments in angle metrology
,” in
2nd MacroScale Conference, Recent Developments in Traceable Dimensional Measurements
,
Vienna
,
2015
. http://public.ptb.de/oa/doidocs/810_20150325f.htm.
18.
T.
Yandayan
,
R.
Geckeler
,
C.
Schlewitt
, and
F.
Siewert
, “
State of the art in angle metrology and updated information for x-ray optics community
,” in
Invited talk in International Workshop on X-Ray Metrology, Satellite Workshop of SRI 2015
(
ALS Berkeley National Lab, Berkeley
,
California, USA
,
2015
).
19.
F.
Siewert
 et al, “
On the characterization of ultra-precise x-ray optical components—Advances and challenges in ex situ metrology
,”
J. Synchrotron Radiat.
21
,
968
(
2014
).
20.
A.
Just
,
M.
Krause
,
R.
Probst
, and
R.
Wittekopt
, “
Calibration of high-resolution electronic autocollimators against an angle comparator
,”
Metrologia
40
,
288
294
(
2003
).
21.
T.
Yandayan
,
S. A.
Akgoz
, and
M.
Asar
, “
Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders
,”
Meas. Sci. Technol.
25
,
015010
(
2014
).
22.
J. C.
Evans
and
C. O.
Taylerson
,
Measurement of Angle in Engineering
(
National Physical Laboratory
,
HMSO, London
,
1986
).
23.
T.
Yandayan
,
B.
Ozgur
,
N.
Karaboce
, and
O.
Yaman
, “
High precision small angle generator for realization of the SI unit of plane angle and calibration of high precision autocollimators
,”
Meas. Sci. Technol.
23
,
094006
(
2012
).
24.
M.
Astrua
and
M.
Pisani
, “
The new INRiM nanoangle generator
,”
Metrologia
46
,
674
681
(
2009
).
25.
CMC (Calibration Measurement Capabilities) database of the BIPM, 2015, http://kcdb.bipm.org/appendixC/.
26.
R. D.
Geckeler
and
A.
Just
, “
A shearing-based method for the simultaneous calibration of angle measuring devices
,”
Meas. Sci. Technol.
25
,
105009
(
2014
).
27.
C.
Elster
and
I.
Weingärtner
, “
Solution to the shearing problem
,”
Appl. Opt.
38
,
5024
5031
(
1999
).
28.
C.
Elster
, “
Recovering wavefronts from difference measurements in lateral shearing interferometry
,”
J. Comput. Appl. Math.
110
,
177
180
(
1999
).
29.
C.
Elster
, “
Exact two dimensional wavefront reconstruction from lateral shearing interferograms with large shears
,”
Appl. Opt.
39
,
5353
5359
(
2000
).
30.
SI Brochure
, 8th ed., 2015, http://www.bipm.org/en/measurement-units/.
31.
32.
JCGM 101:2008
, Evaluation of Measurement Data–supplement 1 to the Guide to the Expression of Uncertainty in Measurement–Propagation of distributions using a Monte Carlo method,
2015
, http://www.bipm.org/en/publications/guides/.
33.
M. G.
Cox
,
M. P.
Dainton
,
A. B.
Forbes
,
P. M.
Harris
,
H.
Schwenke
,
B. R. L.
Siebert
, and
W.
Wöger
, “
Use of Monte Carlo simulation for uncertainty evaluation in metrology
,” in
Advanced Mathematical and Computational Tools in Metrology
, 5th ed., edited by
P.
Ciarlini
, et al
(
World Scientific
,
Singapore
,
2001
), pp.
93
105
.
34.
JCGM 100:2008
, Evaluation of Measurement Data–Guide to the Expression of Uncertainty in Measurement,
2015
, http://www.bipm.org/en/publications/guides/.
You do not currently have access to this content.