The techniques presented in this paper allow for mapping of temperature, pressure, chemical species, and energy deposition during and following detonations of explosives, using high speed cameras as the main diagnostic tool. This work provides measurement in the explosive near to far-field (0-500 charge diameters) of surface temperatures, peak air-shock pressures, some chemical species signatures, shock energy deposition, and air shock formation.
REFERENCES
1.
L.
Michalski
, K.
Eckersdorf
, J.
Kucharski
, and J.
McGhee
, Temperature Measurement
, 2nd ed. (John Wiley & Sons Ltd.
, West Sussex, England
, 2001
).2.
C. W.
Waidner
and G. K.
Burgess
, Optical Pyrometry, Scientific Papers of the Bureau of Standards
(Government Printing Office
, Washington
, 1905
), Vol. 11
.3.
K.
Motzfeldt
, High Temperature Experiments in Chemistry and Materials Science
(John Wiley and Sons Ltd.
, UK
, 2013
).4.
H. J.
Kostkowski
and R. D.
Lee
, “Theory and methods of optical pyrometry
,” Natl. Bur. Stand. U.S. Monogr.
41
, 361
(1962
).5.
C.
Balaji
, Essentials of Radiation Heat Transfer
(John Wiley & Sons Ltd.
, West Sussex, England
, 2014
).6.
T.
Ogura
, K.
Okada
, T.
Abe
, K.
Wakabayashi
, K.
Ishikawa
, E.
Kuroda
, T.
Matsumura
, Y.
Nakayama
, and M.
Yoshida
, “Pyrometry study on fireballs generated upon the explosion of TNT, energetic materials: Reactions of propellants, explosives and pyrotechnics
,” in 34th International Annual Conference of ICT
, Karlsruhe, Germany
, 24–27 June 2003
(Fraunhofer Institute for Chemical Technology
, 2003
), p. 18/1
.7.
S.
Goroshin
, D. L.
Frost
, J.
Levine
, A.
Yoshinaka
, and F.
Zhang
, “Optical pyrometry of fireballs of metalized explosives
,” Propellants, Explos., Pyrotech.
31
(3
), 169
(2006
).8.
M.
Capitelli
, G.
Colonna
, G.
D’Ammando
, R.
Gaudiuso
, and L. D.
Pietanza
, “Physical processes in optical emission spectroscopy
,” in Laser Induced Breakdown Spectroscopy: Theory Applications
, edited by S.
Musazzi
and U.
Perini
(Springer
, Heidelberg
, 2014
).9.
K. L.
McNesby
and R. A.
Fifer
, “Rotational temperature estimation of CO at high temperatures by graphical methods using FT-IR spectroscopy
,” Appl. Spectrosc.
45
, 61
–67
(1997
).10.
B.
Bédat
, A.
Giovannini
, and S.
Pauzin
, “Thin filament infrared pyrometry: Instantaneous temperature profile measurements in a weakly turbulent hydrocarbon premixed flame
,” Exp. Fluids
17
, 397
–404
(1994
).11.
T.
Fu
, X.
Cheng
, and Z.
Yang
, “Theoretical evaluation of measurement uncertainties of two-color pyrometry applied to optical diagnostics
,” Appl. Opt.
47
(32
), 6112
(2008
).12.
G. J.
Hampson
and R. D.
Reitz
, “Two-colour imaging of incylinder soot concentration and temperature in a heavy-duty DI diesel engine with comparison to multidimensional modeling for single and split injections
,” SAE Technical Paper No. 980524
, Society of Automotive Engineers
, 1998
.13.
F.
Cignoli
, S.
De Iuliis
, V.
Manta
, and G.
Zizak
, “Two-dimensional two-wavelength emission technique for soot diagnostics
,” Appl. Opt.
40
, 5370
–5378
(2001
).14.
B. C.
Connelly
, S. A.
Kaiser
, M. D.
Smooke
, and M. B.
Long
, “Two-dimensional soot pyrometry with a color digital camera
,” in Proceedings of the Fourth Joint Meeting of the U.S. Sections of the Combustion Institute
(Combustion Institute
, 2005
).15.
P. B.
Kuhn
, B.
Ma
, B. C.
Connoly
, M. D.
Smooke
, and M. B.
Long
, “Soot and thin-filament pyrometry using a color digital camera
,” Proc. Combus. Inst.
33
, 743
–750
(2011
).16.
J. M.
Densmore
, B. E.
Homan
, M. M.
Biss
, and K. L.
McNesby
, “High-speed two-camera imaging pyrometer for mapping fireball temperatures
,” Appl. Opt.
50
(33
), 6267
(2011
).17.
J. M.
Densmore
, M. M.
Biss
, K. L.
McNesby
, and B. E.
Homan
, “High speed digital color imaging pyrometry
,” Appl. Opt.
50
, 2659
–2665
(2011
).18.
R. A.
Alberty
and F.
Daniels
, Physical Chemistry
, 5th ed. (John Wiley and Sons
, 1979
).19.
J. M.
Densmore
, M. M.
Biss
, B. E.
Homan
, and K. L.
McNesby
, “Thermal imaging of nickel-aluminum and aluminum-polytetrafluoroethylene impact initiated combustion
,” J. Appl. Phys.
112
(8
), 084911-1
–084911-5
(2012
).20.
K.
McNesby
, B.
Homan
, T.
Piehler
, and R.
Lottero
, “Spectroscopic measurements of fireballs produced by enhanced blast explosives
,” ARL-TR-3318
, U.S. Army Research Laboratory
, Aberdeen Proving Ground, MD, 2004
.21.
K. L.
McNesby
, B. E.
Homan
, J. J.
Ritter
, Z.
Quine
, R. Z.
Ehlers
, and B. A.
McAndrew
, “Afterburn ignition delay and shock augmentation in fuel rich solid explosives
,” Propellants, Explos., Pyrotech.
35
(1
), 57
–65
(2010
).22.
W.
Wien
, “On the division of energy in the emission-spectrum of a black body
,” Philos. Mag. Ser. 5
43
(262
), 214
–220
(1897
).23.
J.
Kalman
, N.
Glumac
, and H.
Krier
, “”High-temperature metal oxide spectral emissivities for pyrometry applications
,” J. Thermophys. Heat Transfer
29
(4
), 874
–879
(2015
).24.
P.
Lynch
, H.
Krier
, and N.
Glumac
, “Emissivity of aluminum-oxide particle clouds: Application to pyrometry of explosive fireballs
,” J. Thermophys. Heat Transfer
24
(2
), 301
–308
(2010
).25.
J. M.
Densmore
, M. M.
Biss
, B. E.
Homan
, and K. L.
McNesby
, “Evaluation of reactive-material-surrounds explosive charges
,” U.S. Army Research Laboratory (ARL), ARLTR-5603, July 2011.26.
F.
Tanaka
and D. P.
Dewitt
, “Theory of a new radiation thermometry method and an experimental study using galvannealed steel specimens
,” Trans. Soc. Instrum. Control Eng.
25
(10
), 1031
–1037
(1989
).27.
N.
Magunov
, “Spectral pyrometry (review)
,” Instrum. Exp. Tech.
52
(4
), 451
–472
(2009
).28.
A. L.
Kuhl
, J.
Forbes
, J.
Chandler
, A. K.
Oppenheim
, R.
Spektor
, and R. E.
Ferguson
, “Confined combustion of TNT explosion products in air
,” in Proceedings of the 8th International Colloquium on Dust Explosions
, Schaumberg, IL
, 21–25 September 1998
.29.
K. L.
McNesby
, A. W.
Miziolek
, T.
Nguyen
, F. C.
Delucia
, R. R.
Skaggs
, and T. A.
Litzinger
, “Experimental and computational studies of oxidizer and fuel side addition of ethanol to opposed flow air/ethylene flames
,” Combust. Flame
142
, 413
–427
(2005
).30.
K. L.
McNesby
, M. M.
Biss
, R. A.
Benjamin
, and R. A.
Thompson
, “Chemical imaging of explosions–mapping BO2 light emission
,” Propellants, Explos., Pyrotech.
40
(4
), 539
–543
(2015
).31.
Y. R.
Sivathanu
and G. M.
Faeth
, “Temperature/soot volume fraction correlations in the fuel-rich region of buoyant turbulent diffusion flames
,” Combust. Flame
81
, 150
–165
(1990
).32.
G.
Herzberg
, Infrared and Raman Spectra
(D. Van Nostrand Company Inc.
, New York
, 1950
).33.
J. W. C.
Johns
, “The absorption spectrum of BO2
,” Can. J. Phys.
39
, 1738
–1768
(1961
).34.
J.
Kalman
, D.
Allen
, N.
Glumac
, and H.
Krier
, “Optical depth effects on aluminum oxide spectral emissivity
,” J. Thermophys. Heat Transfer
29
(1
), 74
–82
(2015
).35.
CHEETAH 6.0 Users Manual, LLNL-SM-416166, Copyright 2010, Lawrence Livermore National Security, All Rights Reserved.
36.
A.
Vollan
and L.
Alati
, “A new optical pressure measurement system
,” in 14th ICIASF Congress
, Rockville, MD, USA
, 27–31 October 1991
.37.
J. D.
Barnett
, S.
Block
, and G. J.
Piermarini
, “An optical fluorescence system for quantitative pressure measurement in the diamond-anvil cell
,” Rev. Sci. Instrum.
44
, 1
(1973
).38.
C.
Wagner
, J.
Frankenberger
, and P. P.
Deimel
, “Optical pressure sensor based on a Mach-Zehnder interferometer integrated with a lateral a-Si:H p-i-n photodiode
,” IEEE Photon. Technol. Lett.
5
, 10
(1993
).39.
W. H.
Glenn
and R. G.
Tomlinson
, “Optical pressure sensor
,” U.S. patent US4368645 A (18 January 1983
).40.
G. B.
Hocker
, “Fiber-optic sensing of pressure and temperature
,” Appl. Opt.
18
(9
), 1445
–1448
(1979
).41.
L. C.
Philippe
and R. K.
Hanson
, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows
,” Appl. Opt.
32
(30
), 6090
–6103
(1993
).42.
G. S.
Settles
, Schlieren and Shadowgraph Techniques—Visualizing Phenomena in Transparent Media
(Springer
, Berlin
, 2001
).43.
E.
Mach
and P.
Salcher
, “Photogrphische fixierung der durch projectile in der luft eingeleiteten vorgange
,” Sitzungsb. Akad. Wiss. Wien
95
, 764
–780
(1887
).44.
C.
Cranz
and H.
Schardin
, “Kinematographie auf ruhendem film und mit extreme hoher bildfrequenz
,” Z. Phys.
56
, 147
–183
(1929
).45.
46.
E. D.
Eyles
, “High-speed photography and its applications to industrial problems
,” J. Sci. Instrum.
18
, 175
–184
(1941
).47.
G. F.
Kinney
and K. J.
Graham
, Explosive Shocks in Air
, 2nd ed. (Springer-Verlag
, Berlin
, 1985
).48.
M.
Biss
and K.
McNesby
, “Optically measured explosive impulse
,” Exp. Fluids
55
, 1749
(2014
).49.
D. B.
Watts
and M. T.
Van Tassel
, “Remote blast pressure sensor
,” A7ATL-88-55, August 1988.50.
L. R.
Dosser
, J. W.
Reed
, and M. A.
Stark
, “Laser illuminated high speed photography of energetic materials and components with a copper vapor laser
,” in Proceedings of International Conference on Lasers
(STS Press
, 1987
).51.
D. L.
Frost
, S.
Goroshin
, J.
Levin
, R.
Ripley
, and F.
Zhang
, “Critical conditions for ignition of metal particles in a condensed explosive
,” in Proceedings of 12th International Detonation Symposium, San Diego, CA
(Office of Naval Research
, Arlington, VA
, 2002
), pp. 693
–701
.52.
K. L.
McNesby
, B. E.
Homan
, and R. E.
Lottero
, “High brightness imaging for real time measurement of shock, particle, and combustion fronts produced by enhanced blast explosives,” U.S. Army Research Laboratory (ARL), ARL-TR-3411, January 2005.53.
P. L.
Walter
, “Air blast and the science of dynamic pressure measurements
,” PCB Tech Note TN-31
(2014
), www.pcb.com.54.
D. B.
Watts
and M. T.
Van Tassel
, “Transducer development for explosive measurements
,” AFATL-TP-89–12
(Air Force Armament Laboratory
, 1989
).55.
Ultrahigh Frequency Pressure Sensors—Geocenters, Inc., APATL-TR-88-49, October 1988.
56.
Ultrahigh Frequency Pressure Sensors—Novasensor, AFATL-TR-88-77, October 1988.
57.
K. L.
McNesby
, M. M.
Biss
, R. A.
Benjamin
, and R. A.
Thompson
, “Optical measurement of peak air shock pressures following explosions
,” Propellants, Explos., Pyrotech.
39
, 59
–64
(2014
).58.
D.
Hyde
, “User’s guide for microcomputer programs: Conwep and FUNPRO—Applications of TM 5-855-1,” U.S. Army Engineer Waterways Experimental Station, Vicksburg, 1988.59.
60.
C. L.
Yeh
and K. K.
Kuo
, “Ignition and combustion of boron particles
,” Prog. Energy Combust. Sci.
22
, 511
–541
(1996
).61.
W. J.
Miller
, “Boron combustion product chemistry
,” AeroChem TP-349
, October 1976.62.
R. C.
Brown
, C. E.
Kolb
, S. Y.
Cho
, R. A.
Yetter
, F. L.
Dryer
, and H.
Rabitz
, Int. J. Chem. Kinet.
226
, 319
–332
(1994
).63.
E. L.
Dreizin
, D. G.
Keil
, W.
Felder
, and E. P.
Vicenzi
, “Phase changes in boron ignition and combustion
,” Combust. Flame
119
, 272
–290
(1999
).64.
E. L.
Dreizin
, private communication (2012).65.
B. P.
Burns
, L.
Burton
, and W. H.
Drysdale
, “Methodologies for forecasting sabot mass for advanced gun and projectile systems
,” BRL-TR-3387
(U.S. Army Ballistics Research Laboratory
, Aberdeen Proving Ground, MD, 1992
).66.
B. S.
Snowden
, Jr., “The emission spectrum of the BO2 molecule
,” Ph.D. thesis, 64–4757, Vanderbilt University, Physical Chemistry; University Microfilms, Inc.
, Ann Arbor, MI, 1963
.67.
68.
W. E.
Deal
, “Shock Hugoniot of air
,” J. Appl. Phys.
28
(7
), 782
–784
(1957
).69.
Explosive Effects Applications
, edited by J. A.
Zukas
and W. P.
Walters
(Springer
, New York
, 1997
), Chap. III.70.
C. L.
Mader
, Numerical Modeling of Explosives and Propellants
, 3rd ed. (CRC Press
, Boca Raton, FL
, 2008
).71.
F. G.
Freidlander
, “The diffraction of sound pulses. I. Diffraction by a semi-infinite plate
,” Proc. R. Soc. A
186
, 322
–344
(1946
).72.
A. G.
Gaydon
and I. R.
Hurle
, The Shock Tube in High-Temperature Chemical Physics
(Rheinhold Publishing
, New York
, 1963
).73.
M. N.
Plooster
, “Blast effects from cylindrical explosive charges: Experimental measurements
,” Report NWC TP 6382
(Naval Report Centre
, China Lake, CA, USA,1982
).74.
C.
Knock
, N.
Davies
, and T.
Reeves
, “Predicting blast waves from the axial direction of a cylindrical charge
,” Propellants, Explos., Pyrotech.
40
, 169
–179
(2015
).75.
W. C.
Davis
, T. R.
Salyer
, S. I.
Jackson
, and T. D.
Aslam
, “Explosive-driven shock waves in argon
,” in Proceedings of the 13th International Detonation Symposium
(The Office of Naval Research
, U.S. Navy
, 2006
), pp. 1035
–1044
.76.
W. G.
Vulliet
, “Radiation from explosive-driven shocks in the noble gases
,” J. Quant. Spectrosc. Radiat. Transfer
4
, 839
–845
(1964
).77.
R. L.
Conger
, L. T.
Long
, J. A.
Parks
, and J. H.
Johnson
, “The spectrum of the argon bomb
,” Appl. Opt.
4
(3
), 273
–276
(1964
).78.
J.
Kojima
, Y.
Ikeda
, and T.
Nakajima
, “Spatially resolved measurement of OH*, CH*, and C2∗ chemiluminescence in the reaction zone of laminar methane/air premixed flames
,” Proc. Combust. Inst.
28
, 1757
–1764
(2000
).79.
N.
Glumac
, “Early time spectroscopic measurements during high-explosive detonation breakout into air
,” Shock Waves
23
, 131
–138
(2013
).2016
U.S. Government
You do not currently have access to this content.