In this work, a new type of elementary logic circuit, named random flip-flop (RFF), is proposed, experimentally realized, and studied. Unlike conventional Boolean logic circuits whose action is deterministic and highly reproducible, the action of a RFF is intentionally made maximally unpredictable and, in the proposed realization, derived from a fundamentally random process of emission and detection of light quanta. We demonstrate novel applications of RFF in randomness preserving frequency division, random frequency synthesis, and random number generation. Possible usages of these applications in the information and communication technology, cryptographic hardware, and testing equipment are discussed.

1.
See http://pdf.datasheetcatalog.com/datasheet/philips/74f74.pdf for 74F74 Dual D-type flip-flop, Philips Product specification (last accessed June 27, 2015).
2.
T. F. d. M.
Wahl
,
M.
Leifgen
,
M.
Berlin
,
T.
Roehlicke
,
H. J.
Rahn
, and
O.
Benson
, “
An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements
,”
Appl. Phys. Lett.
98
,
171105
(
2011
).
3.
M.
Stipčević
, “
Fast nondeterministic random bit generator based on weakly correlated physical events
,”
Rev. Sci. Instrum.
75
,
4442
4449
(
2004
).
4.
M.
Stipčević
and
B. M.
Rogina
, “
Quantum random number generator based on photonic emission in semiconductors
,”
Rev. Sci. Instrum.
78
,
045104
(
2007
).
5.
M.
Stipčević
, “
A novel active quenching circuit for single photon detection with Geiger mode avalanche photodiodes
,”
Appl. Opt.
48
,
1705
1714
(
2009
).
6.
M.
Stipčević
,
D.
Wang
, and
R.
Ursin
, “
Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode
,”
J. Lightwave Technol.
31
,
3591
3596
(
2013
).
7.
M.
Stipčević
and
R.
Ursin
, “
An on-demand optical quantum random number generator with in-future action and ultra-fast response
,”
Sci. Rep.
5
,
10214
(
2015
).
8.
V. B.
Minuhin
, “
3/2 frequency divider
,” U.S. patent US4866741(priority date 12 September
1989
).
9.
N.
Regimbal
,
F.
Badets
,
D.
Bordeaux
,
J. B.
Begueret
, inventors, and
CNRS, STMicroelectronics S.A.
, applicants, “
Fractional frequency divider
,” U.S. patent US2012/0001665 (29 June
2011
).
10.
R. E.
Best
,
Phase-locked Loops: Design Simulation and Applications
(
McGraw-Hill
,
2003
), ISBN: 0-07-141201-8.
11.
A.
Papoulis
and
S. U.
Pillai
,
Probability, Random Variables, and Stochastic Processes
, 4th ed. (
McGraw-Hill Europe
,
2002
), ISBN-13: 978–0071226615.
12.
D. E.
Knuth
,
The Art of Computer Programming
, 3rd ed. (
Addison-Wesley
,
Reading
,
1997
), Vol.
2
.
13.
A. S.
Robinson
, “
Pulse rate function generator
,” U.S. patent US3217148 (priority date 28 June 1960).
14.
J. A.
Hanby
and
S. J.
Redman
, “
Random pulse train generator with linear voltage control of average rate
,”
Rev. Sci. Instrum.
42
,
657
662
(
1971
).
15.
G.
White
, “
The generation of random-time pulses at an accurately known mean rate and having a nearly perfect Poisson distribution
,”
J. Sci. Instrum.
41
,
361
364
(
1964
).
16.
T.
Noriyoshi
and
Y.
Hiroyasu
, “
Random pulse generator and random number generation device and probability generation device utilizing the random number generator
,” patent EP1094603A1 (20 October 1999).
17.
V. S.
Reinhardt
,
R. P.
Verdes
,
I.
Shahriari
, inventors, and
Hughes Aircraft Company
, asignee, “
Spurless fractional divider direct digital frequency synthesizer and method
,” U.S. patent US4815018 (21 March
1989
).
18.
R. C.
Lawlor
, “
Computer ulitizing random pulse trains
,” U.S. patent US3612845 (12 October 1971).
19.
A.
Rukhin
,
J.
Soto
,
J.
Nechvatal
,
M.
Smid
,
E.
Barker
,
S.
Leigh
,
M.
Levenson
,
M.
Vangel
,
D.
Banks
,
A.
Heckert
,
J.
Dray
, and
S.
Vo
, “
A statistical test suite for the validation of random number generators and pseudo random number generators for cryptographic applications
,” NIST Special Publication, 800–22rev1a, April 2010, URL: http://csrc.nist.gov/groups/ST/toolkit/rng/documents/sts-2.1.1.zip.
20.
See http://www.statista.com/markets/409/topic/438/gambling/ for statistics and market data on gambling (last accessed March 8, 2016).
21.
M. S.
Roulston
, “
Estimating the errors on measured entropy and mutual information
,”
Physica D
125
,
285
294
(
1999
).
You do not currently have access to this content.