In this paper, we present the construction of a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) system that allows in situ sample preparation and measurement. A detailed description of the prototype instrument is presented with experimental validation of its use and novel ex situ experimental results using the HV-TERS system. The HV-TERS system includes three chambers held under a 10−7 Pa vacuum. The three chambers are an analysis chamber, a sample preparation chamber, and a fast loading chamber. The analysis chamber is the core chamber and contains a scanning tunneling microscope (STM) and a Raman detector coupled with a 50 × 0.5 numerical aperture objective. The sample preparation chamber is used to produce single-crystalline metal and sub-monolayer molecular films by molecular beam epitaxy. The fast loading chamber allows ex situ preparation of samples for HV-TERS analysis. Atomic resolution can be achieved by the STM on highly ordered pyrolytic graphite. We demonstrate the measurement of localized temperature using the Stokes and anti-Stokes TERS signals from a monolayer of 1,2-benzenedithiol on a gold film using a gold tip. Additionally, plasmonic catalysis can be monitored label-free at the nanoscale using our device. Moreover, the HV-TERS experiments show simultaneously activated infrared and Raman vibrational modes, Fermi resonance, and some other non-linear effects that are not observed in atmospheric TERS experiments. The high spatial and spectral resolution and pure environment of high vacuum are beneficial for basic surface studies.

1.
E. C.
Le Ru
and
P. G.
Etchegoin
, in
Principles of Surface-Enhanced Raman Spectroscopy
, edited by
E. C. L.
Ru
and
P. G.
Etchegoin
(
Elsevier
,
Amsterdam
,
2009
), pp.
1
27
.
2.
L.
Novotny
and
B.
Hecht
,
Principles of Nano-Optics
(
Cambridge University Press
,
2006
).
3.
M. D.
Sonntag
,
E. A.
Pozzi
,
N.
Jiang
,
M. C.
Hersam
, and
R. P.
Van Duyne
, “
Recent advances in tip-enhanced Raman spectroscopy
,”
J. Phys. Chem. Lett.
5
,
3125
3130
(
2014
).
4.
G.
Binnig
and
H.
Rohrer
, “
Scanning tunneling microscopy
,”
IBM J. Res. Dev.
30
,
355
369
(
1986
).
5.
E. J.
Ayars
,
H. D.
Hallen
, and
C. L.
Jahncke
, “
Electric field gradient effects in Raman spectroscopy
,”
Phys. Rev. Lett.
85
,
4180
4183
(
2000
).
6.
E. J.
Ayars
,
H. D.
Hallen
, and
M. A.
Paesler
, “
Electric field gradient effects in NSOM-Raman spectroscopy
,”
Abstr. Pap. Am. Chem. S
221
,
U96
(
2001
).
7.
B.
Pettinger
,
G.
Picardi
,
R.
Schuster
, and
G.
Ertl
, “
Surface-enhanced and STM-tip-enhanced Raman spectroscopy at metal surfaces
,”
Single Mol.
3
,
285
294
(
2002
).
8.
B.
Pettinger
,
B.
Ren
,
G.
Picardi
,
R.
Schuster
, and
G.
Ertl
, “
Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy
,”
Phys. Rev. Lett.
92
,
096101
(
2004
).
9.
B.
Ren
,
G.
Picardi
,
B.
Pettinger
,
R.
Schuster
, and
G.
Ertl
, “
Tip-enhanced Raman spectroscopy of benzenethiol adsorbed on Au and Pt single-crystal surfaces
,”
Angew. Chem., Int. Ed.
44
,
139
142
(
2005
).
10.
E.
Bailo
and
V.
Deckert
, “
Tip-enhanced Raman scattering
,”
Chem. Soc. Rev.
37
,
921
930
(
2008
).
11.
H.
Kim
,
K. M.
Kosuda
,
R. P.
Van Duyne
, and
P. C.
Stair
, “
Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions
,”
Chem. Soc. Rev.
39
,
4820
4844
(
2010
).
12.
B.
Pettinger
,
P.
Schambach
,
C. J.
Villagomez
, and
N.
Scott
, “
Tip-enhanced Raman spectroscopy: Near-fields acting on a few molecules
,”
Annu. Rev. Phys. Chem.
63
,
379
399
(
2012
).
13.
J.
Stadler
,
T.
Schmid
, and
R.
Zenobi
, “
Developments in and practical guidelines for tip-enhanced Raman spectroscopy
,”
Nanoscale
4
,
1856
1870
(
2012
).
14.
R.
Zhang
,
Y.
Zhang
,
Z. C.
Dong
,
S.
Jiang
,
C.
Zhang
,
L. G.
Chen
,
L.
Zhang
,
Y.
Liao
,
J.
Aizpurua
,
Y.
Luo
,
J. L.
Yang
, and
J. G.
Hou
, “
Chemical mapping of a single molecule by plasmon-enhanced Raman scattering
,”
Nature
498
,
82
86
(
2013
).
15.
T.
Schmid
,
L.
Opilik
,
C.
Blum
, and
R.
Zenobi
, “
Nanoscale chemical imaging using tip-enhanced Raman spectroscopy: A critical review
,”
Angew. Chem., Int. Ed.
52
,
5940
5954
(
2013
).
16.
N.
Mauser
and
A.
Hartschuh
, “
Tip-enhanced near-field optical microscopy
,”
Chem. Soc. Rev.
43
,
1248
1262
(
2014
).
17.
J.
Steidtner
and
B.
Pettinger
, “
High-resolution microscope for tip-enhanced optical processes in ultrahigh vacuum
,”
Rev. Sci. Instrum.
78
,
103104
(
2007
).
18.
L.
Meng
,
Z.
Yang
,
J.
Chen
, and
M.
Sun
, “
Effect of electric FieldGradient on sub-nanometer spatial resolution of tip-enhanced Raman spectroscopy
,”
Sci. Rep.
5
,
9240
(
2015
).
19.
Y. R.
Fang
,
W. S.
Yang
,
S.
Fang
, and
H. X.
Xu
, China Patent No. CN101915756A (
2010
).
20.
N.
Jiang
,
E. T.
Foley
,
J. M.
Klingsporn
,
M. D.
Sonntag
,
N. A.
Valley
,
J. A.
Dieringer
,
T.
Seideman
,
G. C.
Schatz
,
M. C.
Hersam
, and
R. P.
Van Duyne
, “
Observation of multiple vibrational modes in ultrahigh vacuum tip-enhanced Raman spectroscopy combined with molecular-resolution scanning tunneling microscopy (vol 12, pg 5061, 2012)
,”
Nano Lett.
12
,
6506
(
2012
).
21.
B.
Ren
,
G.
Picardi
, and
B.
Pettinger
, “
Preparation of gold tips suitable for tip-enhanced Raman spectroscopy and light emission by electrochemical etching
,”
Rev. Sci. Instrum.
75
,
837
841
(
2004
).
22.
D. P.
dos Santos
,
G. F. S.
Andrade
,
A. G.
Brolo
, and
M. L. A.
Temperini
, “
Fluctuations of the Stokes and anti-Stokes surface-enhanced resonance Raman scattering intensities in an electrochemical environment
,”
Chem. Commun.
47
,
7158
7160
(
2011
).
23.
J. C.
Deak
,
L. K.
Iwaki
,
S. T.
Rhea
, and
D. D.
Dlott
, “
Ultrafast infrared-Raman studies of vibrational energy redistribution in polyatomic liquids
,”
J. Raman Spectrosc.
31
,
263
274
(
2000
).
24.
B.
Dong
,
Y. R.
Fang
,
L. X.
Xia
,
H. X.
Xu
, and
M. T.
Sun
, “
Is 4-nitrobenzenethiol converted to p,p ’-dimercaptoazobenzene or 4-aminothiophenol by surface photochemistry reaction?
,”
J. Raman Spectrosc.
42
,
1205
1206
(
2011
).
25.
Y. Z.
Huang
,
Y. R.
Fang
,
Z. L.
Yang
, and
M. T.
Sun
, “
Can p,p’-Dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film?
,”
J. Phys. Chem. C
114
,
18263
18269
(
2010
).
26.
P.
Hohenberg
and
W.
Kohn
, “
Inhomogeneous electron gas
,”
Phys. Rev. B
136
,
B864
(
1964
).
27.
M.
Moskovits
and
D. P.
Dilella
, “
Surface-enhanced Raman-spectroscopy of benzene and benzene-D6 adsorbed on silver
,”
J. Chem. Phys.
73
,
6068
6075
(
1980
).
28.
M.
Moskovits
and
D. P.
Dilella
, “
Intense quadrupole transitions in the spectra of molecules near metal-surfaces
,”
J. Chem. Phys.
77
,
1655
1660
(
1982
).
29.
E.
Fermi
, “
Über den Ramaneffekt des Kohlendioxyds
,”
Z. Phys.
71
,
250
(
1931
).
30.
K. D.
Bier
and
H. J.
Jodl
, “
Tuning of the Fermi resonance of Co2 and Cs2 by temperature, pressure, and matrix material
,”
J. Chem. Phys.
86
,
4406
4410
(
1987
).
31.
R. A.
Nyquist
,
H. A.
Fouchea
,
G. A.
Hoffman
, and
D. L.
Hasha
, “
Infrared study of beta-propiolactone in various solvent systems and other lactones
,”
Appl. Spectrosc.
45
,
860
867
(
1991
).
32.
Z. L.
Zhang
,
L.
Chen
,
M. T.
Sun
,
P. P.
Ruan
,
H. R.
Zheng
, and
H. X.
Xu
, “
Insights into the nature of plasmon-driven catalytic reactions revealed by HV-TERS
,”
Nanoscale
5
,
3249
3252
(
2013
).
33.
M. T.
Sun
,
Z. L.
Zhang
,
Z. H.
Kim
,
H. R.
Zheng
, and
H. X.
Xu
, “
Plasmonic scissors for molecular design
,”
Chem.-Eur. J.
19
,
14958
14962
(
2013
).
34.
M. T.
Sun
,
Y. R.
Fang
,
Z. Y.
Zhang
, and
H. X.
Xu
, “
Activated vibrational modes and Fermi resonance in tip-enhanced Raman spectroscopy
,”
Phys. Rev. E
87
,
020401
(
2013
).
35.
Z. L.
Zhang
,
M. T.
Sun
,
P. P.
Ruan
,
H. R.
Zheng
, and
H. X.
Xu
, “
Electric field gradient quadrupole Raman modes observed in plasmon-driven catalytic reactions revealed by HV-TERS
,”
Nanoscale
5
,
4151
4155
(
2013
).
36.
M. T.
Sun
,
Z. L.
Zhang
,
L.
Chen
,
L.
Qiang
,
S. X.
Sheng
,
H.
Xu
, and
P.
Song
, “
Plasmon-driven selective reductions revealed by tip-enhanced Raman spectroscopy
,”
Adv. Mater. Interfaces
1
,
1300125
(
2014
).
37.
Z. L.
Zhang
,
S. X.
Sheng
,
H. R.
Zheng
,
H. X.
Xu
, and
M. T.
Sun
, “
Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors
,”
Nanoscale
6
,
4903
4908
(
2014
).
38.
M. T.
Sun
,
Z. L.
Zhang
,
H. R.
Zheng
, and
H. X.
Xu
, “
In situ plasmon-driven chemical reactions revealed by high vacuum tip-enhanced Raman spectroscopy
,”
Sci. Rep.
2
,
647
(
2012
).
39.
M. T.
Sun
,
Z. L.
Zhang
,
L.
Chen
, and
H. X.
Xu
, “
Tip-enhanced resonance couplings revealed by high vacuum tip-enhanced Raman spectroscopy
,”
Adv. Opt. Mater.
1
,
449
455
(
2013
).
40.
M. T.
Sun
,
Z. L.
Zhang
,
L.
Chen
,
S. X.
Sheng
, and
H. X.
Xu
, “
Plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy
,”
Adv. Opt. Mater.
2
,
74
80
(
2014
).
41.
Y. R.
Fang
,
Z. L.
Zhang
,
L.
Chen
, and
M. T.
Sun
, “
Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy
,”
Phys. Chem. Chem. Phys.
17
,
783
794
(
2015
).
You do not currently have access to this content.