We develop and test a stress-controlled, parallel plates shear cell that can be coupled to an optical microscope or a small angle light scattering setup, for simultaneous investigation of the rheological response and the microscopic structure of soft materials under an imposed shear stress. In order to minimize friction, the cell is based on an air bearing linear stage, the stress is applied through a contactless magnetic actuator, and the strain is measured through optical sensors. We discuss the contributions of inertia and of the small residual friction to the measured signal and demonstrate the performance of our device in both oscillating and step stress experiments on a variety of viscoelastic materials.

1.
R. G.
Larson
,
The Structure and Rheology of Complex Fluids
, 1st ed. (
Oxford University Press
,
New York
,
1998
).
2.
M.
Rubinstein
and
R. H.
Colby
,
Polymer Physics
, 1st ed. (
Oxford University Press
,
Oxford, New York
,
2003
).
3.
D. T. N.
Chen
,
Q.
Wen
,
P. A.
Janmey
,
J. C.
Crocker
, and
A. G.
Yodh
, “
Rheology of soft materials
,”
Annu. Rev. Condens. Matter Phys.
1
,
301
322
(
2010
).
4.
K.
Binder
and
W.
Kob
,
Glassy Materials and Disordered Solids: An Introduction to Their Statistical Mechanics
(
World Scientific
,
2011
).
5.
I.
Cantat
,
S.
Cohen-Addad
,
F.
Elias
,
F.
Graner
,
R.
Höhler
,
R.
Flatman
,
O.
Pitois
,
F.
Rouyer
, and
A.
Saint-Jalmes
,
Foams: Structure and Dynamics
(
OUP Oxford
,
2013
).
6.
P. A.
Janmey
,
P. C.
Georges
, and
S.
Hvidt
,
Basic Rheology for Biologists
(
Academic Press
,
2007
), pp.
1
27
.
7.
G. I.
Taylor
, “
The formation of emulsions in definable fields of flow
,”
Proc. R. Soc. A
146
,
501
523
(
1934
).
8.
T.
Gallot
,
C.
Perge
,
V.
Grenard
,
M.-A.
Fardin
,
N.
Taberlet
, and
S.
Manneville
, “
Ultrafast ultrasonic imaging coupled to rheometry: Principle and illustration
,”
Rev. Sci. Instrum.
84
,
045107
(
2013
).
9.
P. T.
Callaghan
, “
Rheo-NMR: Nuclear magnetic resonance and the rheology of complex fluids
,”
Rep. Prog. Phys.
62
,
599
(
1999
).
10.
V. B.
Tolstoguzov
,
A. I.
Mzhel’sky
, and
V. Y.
Gulov
, “
Deformation of emulsion droplets in flow
,”
Colloid Polym. Sci.
252
,
124
132
(
1974
).
11.
T.
Hashimoto
,
T.
Takebe
, and
S.
Suehiro
, “
Apparatus to measure small-angle light scattering profiles of polymers under shear flow
,”
Polym. J.
18
,
123
130
(
1986
).
12.
J. W.
van Egmond
,
D. E.
Werner
, and
G. G.
Fuller
, “
Time-dependent small-angle light scattering of shear-induced concentration fluctuations in polymer solutions
,”
J. Chem. Phys.
96
,
7742
(
1992
).
13.
E.
Di Cola
,
C.
Fleury
,
P.
Panine
, and
M.
Cloitre
, “
Steady shear flow alignment and rheology of lamellae-forming abc triblock copolymer solutions: Orientation, defects, and disorder
,”
Macromolecules
41
,
3627
3635
(
2008
).
14.
D. C. F.
Wieland
,
V. M.
Garamus
,
T.
Zander
,
C.
Krywka
,
M.
Wang
,
A.
Dedinaite
,
P. M.
Claesson
, and
R.
Willumeit-Römer
, “
Studying solutions at high shear rates: A dedicated microfluidics setup
,”
J. Synchrotron Radiat.
23
,
480
486
(
2016
).
15.
D.
Beysens
,
M.
Gbadamassi
, and
L.
Boyer
, “
Light-scattering study of a critical mixture with shear flow
,”
Phys. Rev. Lett.
43
,
1253
(
1979
).
16.
J.
Läuger
and
W.
Gronski
, “
A melt rheometer with integrated small angle light scattering
,”
Rheol. Acta
34
,
70
79
(
1995
).
17.
B. J.
Ackerson
,
J.
van der Werff
, and
C. G.
de Kruif
, “
Hard-sphere dispersions: Small-wave-vector structure-factor measurements in a linear shear flow
,”
Phys. Rev. A
37
,
4819
(
1988
).
18.
Y. D.
Yan
and
J. K. G.
Dhont
, “
Shear-induced structure distortion in nonaqueous dispersions of charged colloidal spheres via light scattering
,”
Phys. A
198
,
78
107
(
1993
).
19.
R.
Linemann
,
J.
Läuger
,
G.
Schmidt
,
K.
Kratzat
, and
W.
Richtering
, “
Linear and nonlinear rheology of micellar solutions in the isotropic, cubic and hexagonal phase probed by rheo-small-angle light scattering
,”
Rheol. Acta
34
,
440
449
(
1995
).
20.
T.
Kume
,
K.
Asakawa
,
E.
Moses
,
K.
Matsuzaka
, and
T.
Hashimoto
, “
A new apparatus for simultaneous observation of optical microscopy and small-angle light scattering measurements of polymers under shear flow
,”
Acta polym.
46
,
79
85
(
1995
).
21.
J.
Vermant
,
L.
Raynaud
,
J.
Mewis
,
B.
Ernst
, and
G. G.
Fuller
, “
Large-scale bundle ordering in sterically stabilized latices
,”
J. Colloid Interface Sci.
211
,
221
229
(
1999
).
22.
P.
Varadan
and
M. J.
Solomon
, “
Shear-induced microstructural evolution of a thermoreversible colloidal gel
,”
Langmuir
17
,
2918
2929
(
2001
).
23.
L.
Porcar
,
W. A.
Hamilton
,
P. D.
Butler
, and
G. G.
Warr
, “
Scaling of shear-induced transformations in membrane phases
,”
Phys. Rev. Lett.
89
,
168301
(
2002
).
24.
L.
Ramos
and
F.
Molino
, “
Shear melting of a hexagonal columnar crystal by proliferation of dislocations
,”
Phys. Rev. Lett.
92
,
018301
(
2004
).
25.
R.
Scirocco
,
J.
Vermant
, and
J.
Mewis
, “
Effect of the viscoelasticity of the suspending fluid on structure formation in suspensions
,”
J. Non-Newtonian Fluid Mech.
117
,
183
192
(
2004
).
26.
I.
Cohen
,
T. G.
Mason
, and
D. A.
Weitz
, “
Shear-induced configurations of confined colloidal suspensions
,”
Phys. Rev. Lett.
93
,
046001
(
2004
).
27.
L.
Yang
,
R. H.
Somani
,
I.
Sics
,
B. S.
Hsiao
,
R.
Kolb
,
H.
Fruitwala
, and
C.
Ong
, “
Shear-induced crystallization precursor studies in model polyethylene blends by in-situ Rheo-SAXS and Rheo-WAXD
,”
Macromolecules
37
,
4845
4859
(
2004
).
28.
Y. L.
Wu
,
J. H. J.
Brand
,
J. L. A.
van Gemert
,
J.
Verkerk
,
H.
Wisman
,
A.
van Blaaderen
, and
A.
Imhof
, “
A new parallel plate shear cell for in situ real-space measurements of complex fluids under shear flow
,”
Rev. Sci. Instrum.
78
,
103902
(
2007
).
29.
Y.
Kosaka
,
M.
Ito
,
Y.
Kawabata
, and
T.
Kato
, “
Lamellar-to-onion transition with increasing temperature under shear flow in a nonionic surfactant/water system
,”
Langmuir
26
,
3835
3842
(
2010
).
30.
V.
Grenard
,
N.
Taberlet
, and
S.
Manneville
, “
Shear-induced structuration of confined carbon black gels: Steady-state features of vorticity-aligned flocs
,”
Soft Matter
7
,
3920
(
2011
).
31.
L.
Ramos
,
A.
Laperrousaz
,
P.
Dieudonné
, and
C.
Ligoure
, “
Structural signature of a brittle-to-ductile transition in self-assembled networks
,”
Phys. Rev. Lett.
107
,
148302
(
2011
).
32.
C. R.
López-Barrón
,
L.
Porcar
,
A. P. R.
Eberle
, and
N. J.
Wagner
, “
Dynamics of melting and recrystallization in a polymeric micellar crystal subjected to large amplitude oscillatory shear flow
,”
Phys. Rev. Lett.
108
,
258301
(
2012
).
33.
R.
Akkal
,
N.
Cohaut
,
M.
Khodja
,
T.
Ahmed-Zaid
, and
F.
Bergaya
, “
Rheo-SAXS investigation of organoclay water in oil emulsions
,”
Colloids Surf., A
436
,
751
762
(
2013
).
34.
L.
Gentile
,
M. A.
Behrens
,
L.
Porcar
,
P.
Butler
,
N. J.
Wagner
, and
U.
Olsson
, “
Multilamellar vesicle formation from a planar lamellar phase under shear flow
,”
Langmuir
30
,
8316
8325
(
2014
).
35.
J. M.
Kim
,
A. P.
Eberle
,
A. K.
Gurnon
,
L.
Porcar
, and
N. J.
Wagner
, “
The microstructure and rheology of a model, thixotropic nanoparticle gel under steady shear and large amplitude oscillatory shear (LAOS)
,”
J. Rheol.
58
,
1301
1328
(
2014
).
36.
N. Y. C.
Lin
,
X.
Cheng
, and
I.
Cohen
, “
Biaxial shear of confined colloidal hard spheres: The structure and rheology of the vorticity-aligned string phase
,”
Soft Matter
10
,
1969
(
2014
).
37.
A. D.
Gopal
and
D. J.
Durian
, “
Nonlinear bubble dynamics in a slowly driven foam
,”
Phys. Rev. Lett.
75
,
2610
(
1995
).
38.
R.
Höhler
,
S.
Cohen-Addad
, and
H.
Hoballah
, “
Periodic nonlinear bubble motion in aqueous foam under oscillating shear strain
,”
Phys. Rev. Lett.
79
,
1154
(
1997
).
39.
F. R.
Molino
,
J.-F.
Berret
,
G.
Porte
,
O.
Diat
, and
P.
Lindner
, “
Identification of flow mechanisms for a soft crystal
,”
Eur. Phys. J. B
3
,
59
72
(
1998
).
40.
P.
Schall
,
I.
Cohen
,
D. A.
Weitz
, and
F.
Spaepen
, “
Visualization of dislocation dynamics in colloidal crystals
,”
Science
305
,
1944
1948
(
2004
).
41.
S.
Reinicke
,
M.
Karg
,
A.
Lapp
,
L.
Heymann
,
T.
Hellweg
, and
H.
Schmalz
, “
Flow-induced ordering in cubic gels formed by p2vp- b-peo- b-p(gme- co-ege) triblock terpolymer micelles: A Rheo-SANS study
,”
Macromolecules
43
,
10045
10054
(
2010
).
42.
M. A.
Torija
,
S.-H.
Choi
,
T. P.
Lodge
, and
F. S.
Bates
, “
Large amplitude oscillatory shear of block copolymer spheres on a body-centered cubic lattice: Are micelles like metals?
,”
J. Phys. Chem. B
115
,
5840
5848
(
2011
).
43.
E.
Tamborini
,
L.
Cipelletti
, and
L.
Ramos
, “
Plasticity of a colloidal polycrystal under cyclic shear
,”
Phys. Rev. Lett.
113
,
078301
(
2014
).
44.
M. E.
Helgeson
,
P. A.
Vasquez
,
E. W.
Kaler
, and
N. J.
Wagner
, “
Rheology and spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles through the shear banding transition
,”
J. Rheol.
53
,
727
(
2009
).
45.
D.
Derks
,
H.
Wisman
,
A.
van Blaaderen
, and
A.
Imhof
, “
Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone–plate shear cell
,”
J. Phys.: Condens. Matter
16
,
S3917
S3927
(
2004
).
46.
R.
Angelico
,
C. O.
Rossi
,
L.
Ambrosone
,
G.
Palazzo
,
K.
Mortensen
, and
U.
Olsson
, “
Ordering fluctuations in a shear-banding wormlike micellar system
,”
Phys. Chem. Chem. Phys.
12
,
8856
(
2010
).
47.
M. E.
Helgeson
,
L.
Porcar
,
C.
Lopez-Barron
, and
N. J.
Wagner
, “
Direct observation of flow-concentration coupling in a shear-banding fluid
,”
Phys. Rev. Lett.
105
,
084501
(
2010
).
48.
T. J.
Ober
,
J.
Soulages
, and
G. H.
McKinley
, “
Spatially resolved quantitative rheo-optics of complex fluids in a microfluidic device
,”
J. Rheol.
55
,
1127
1159
(
2011
).
49.
A. K.
Gurnon
,
C. R.
Lopez-Barron
,
A. P. R.
Eberle
,
L.
Porcar
, and
N. J.
Wagner
, “
Spatiotemporal stress and structure evolution in dynamically sheared polymer-like micellar solutions
,”
Soft Matter
10
,
2889
2898
(
2014
).
50.
V.
Chikkadi
,
D.
Miedema
,
M.
Dang
,
B.
Nienhuis
, and
P.
Schall
, “
Shear banding of colloidal glasses: Observation of a dynamic first-order transition
,”
Phys. Rev. Lett.
113
,
208301
(
2014
).
51.
A.
Basu
,
Q.
Wen
,
X.
Mao
,
T. C.
Lubensky
,
P. A.
Janmey
, and
A. G.
Yodh
, “
Nonaffine displacements in flexible polymer networks
,”
Macromolecules
44
,
1671
1679
(
2011
).
52.
M.-Y.
Nagazi
,
G.
Brambilla
,
G.
Meunier
,
P.
Marguerès
,
J.-N.
Périé
, and
L.
Cipelletti
, “
Space-resolved diffusing wave spectroscopy measurements of the macroscopic deformation and the microscopic dynamics in tensile strain tests
,”
Opt. Lasers Eng.
88
,
5
12
(
2017
).
53.
P.
Hebraud
,
F.
Lequeux
,
J. P.
Munch
, and
D. J.
Pine
, “
Yielding and rearrangements in disordered emulsions
,”
Phys. Rev. Lett.
78
,
4657
4660
(
1997
).
54.
G.
Petekidis
,
A.
Moussaid
, and
P. N.
Pusey
, “
Rearrangements in hard-sphere glasses under oscillatory shear strain
,”
Phys. Rev. E
66
,
051402
(
2002
).
55.
G.
Petekidis
,
P. N.
Pusey
,
A.
Moussaıd¨
,
S.
Egelhaaf
, and
W. C. K.
Poon
, “
Shear-induced yielding and ordering in concentrated particle suspensions
,”
Phys. A
306
,
334
342
(
2002
).
56.
T.
Bauer
,
J.
Oberdisse
, and
L.
Ramos
, “
Collective rearrangement at the onset of flow of a polycrystalline hexagonal columnar phase
,”
Phys. Rev. Lett.
97
,
258303
(
2006
).
57.
R.
Besseling
,
E.
Weeks
,
A. B.
Schofield
, and
W. C. K.
Poon
, “
Three-dimensional imaging of colloidal glasses under steady shear
,”
Phys. Rev. Lett.
99
,
028301
(
2007
).
58.
P.
Schall
,
D. A.
Weitz
, and
F.
Spaepen
, “
Structural rearrangements that govern flow in colloidal glasses
,”
Science
318
,
1895
1899
(
2007
).
59.
P. A.
Smith
,
G.
Petekidis
,
S. U.
Egelhaaf
, and
W. C. K.
Poon
, “
Yielding and crystallization of colloidal gels under oscillatory shear
,”
Phys. Rev. E
76
,
041402
(
2007
).
60.
J.
Zausch
,
J.
Horbach
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. M.
Brader
,
T.
Voigtmann
, and
M.
Fuchs
, “
From equilibrium to steady state: The transient dynamics of colloidal liquids under shear
,”
J. Phys.: Condens. Matter
20
,
404210
(
2008
).
61.
N.
Koumakis
,
M.
Laurati
,
S. U.
Egelhaaf
,
J. F.
Brady
, and
G.
Petekidis
, “
Yielding of hard-sphere glasses during start-up shear
,”
Phys. Rev. Lett.
108
,
098303
(
2012
).
62.
D.
Denisov
,
M. T.
Dang
,
B.
Struth
,
G.
Wegdam
, and
P.
Schall
, “
Resolving structural modifications of colloidal glasses by combining x-ray scattering and rheology
,”
Sci. Rep.
3
,
1631
(
2013
).
63.
N. Y. C.
Lin
,
S.
Goyal
,
X.
Cheng
,
R. N.
Zia
,
F. A.
Escobedo
, and
I.
Cohen
, “
Far-from-equilibrium sheared colloidal liquids: Disentangling relaxation, advection, and shear-induced diffusion
,”
Phys. Rev. E
88
,
062309
(
2013
).
64.
E. D.
Knowlton
,
D. J.
Pine
, and
L.
Cipelletti
, “
A microscopic view of the yielding transition in concentrated emulsions
,”
Soft Matter
10
,
6931
6940
(
2014
).
65.
T.
Sentjabrskaja
,
P.
Chaudhuri
,
M.
Hermes
,
W. C. K.
Poon
,
J.
Horbach
,
S. U.
Egelhaaf
, and
M.
Laurati
, “
Creep and flow of glasses: Strain response linked to the spatial distribution of dynamical heterogeneities
,”
Sci. Rep.
5
,
11884
(
2015
).
66.
A. P.
Eberle
and
L.
Porcar
, “
Flow-SANS and Rheo-SANS applied to soft matter
,”
Curr. Opin. Colloid Interface Sci.
17
,
33
43
(
2012
).
67.
A.
Dhinojwala
and
S.
Granick
, “
Micron-gap rheo-optics with parallel plates
,”
J. Chem. Phys.
107
,
8664
8667
(
1997
).
68.
N.
Koumakis
,
A. B.
Schofield
, and
G.
Petekidis
, “
Effects of shear induced crystallization on the rheology and ageing of hard sphere glasses
,”
Soft Matter
4
,
2008
(
2008
).
69.
J.
Goyon
,
A.
Colin
,
G.
Ovarlez
,
A.
Ajdari
, and
L.
Bocquet
, “
Spatial cooperativity in soft glassy flows
,”
Nature
454
,
84
87
(
2008
).
70.
R.
Besseling
,
L.
Isa
,
E. R.
Weeks
, and
W. C.
Poon
, “
Quantitative imaging of colloidal flows
,”
Adv. Colloid Interface Sci.
146
,
1
17
(
2009
).
71.
R.
Besseling
,
L.
Isa
,
P.
Ballesta
,
G.
Petekidis
,
M. E.
Cates
, and
W. C. K.
Poon
, “
Shear banding and flow-concentration coupling in colloidal glasses
,”
Phys. Rev. Lett.
105
,
268301
(
2010
).
72.
D.
Chen
,
D.
Semwogerere
,
J.
Sato
,
V.
Breedveld
, and
E. R.
Weeks
, “
Microscopic structural relaxation in a sheared supercooled colloidal liquid
,”
Phys. Rev. E
81
,
011403
(
2010
).
73.
J.-B.
Boitte
,
C.
Vizcaïno
,
L.
Benyahia
,
J.-M.
Herry
,
C.
Michon
, and
M.
Hayert
, “
A novel rheo-optical device for studying complex fluids in a double shear plate geometry
,”
Rev. Sci. Instrum.
84
,
013709
(
2013
).
74.
H. K.
Chan
and
A.
Mohraz
, “
A simple shear cell for the direct visualization of step-stress deformation in soft materials
,”
Rheol. Acta
52
,
383
394
(
2013
).
75.
N. Y. C.
Lin
,
J. H.
McCoy
,
X.
Cheng
,
B.
Leahy
,
J. N.
Israelachvili
, and
I.
Cohen
, “
A multi-axis confocal rheoscope for studying shear flow of structured fluids
,”
Rev. Sci. Instrum.
85
,
033905
(
2014
).
76.
L.
Cipelletti
,
H.
Bissig
,
V.
Trappe
,
P.
Ballesta
, and
S.
Mazoyer
, “
Time-resolved correlation: A new tool for studying temporally heterogeneous dynamics
,”
J. Phys.: Condens. Matter
15
,
S257
S262
(
2003
).
77.
A.
Duri
,
D. A.
Sessoms
,
V.
Trappe
, and
L.
Cipelletti
, “
Resolving long-range spatial correlations in Jammed colloidal systems using photon correlation imaging
,”
Phys. Rev. Lett.
102
,
085702-1
085702-4
(
2009
).
78.
L.
Cipelletti
,
G.
Brambilla
,
S.
Maccarrone
, and
S.
Caroff
, “
Simultaneous measurement of the microscopic dynamics and the mesoscopic displacement field in soft systems by speckle imaging
,”
Opt. Express
21
,
22353
22366
(
2013
).
79.
D. A.
Weitz
and
D. J.
Pine
, “
Diffusing-wave spectroscopy
,” in
Dynamic Light Scattering
, edited by
W.
Brown
(
Oxford
,
1993
), pp.
652
720
.
80.
X.-L.
Wu
,
D. J.
Pine
,
P. M.
Chaikin
,
J. S.
Huang
, and
D. A.
Weitz
, “
Diffusing-wave spectroscopy in a shear flow
,”
J. Opt. Soc. Am. B
7
,
15
(
1990
).
81.
M.
Erpelding
,
A.
Amon
, and
J.
Crassous
, “
Diffusive wave spectroscopy applied to the spatially resolved deformation of a solid
,”
Phys. Rev. E
78
,
046104
(
2008
).
82.
B. J.
Berne
and
R.
Pecora
,
Dynamic Light Scattering
(
Wiley
,
New York
,
1976
).
83.
A.
Madsen
,
R. L.
Leheny
,
H.
Guo
,
M.
Sprung
, and
O.
Czakkel
, “
Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy
,”
New J. Phys.
12
,
055001
(
2010
).
84.
M. C.
Rogers
,
K.
Chen
,
L.
Andrzejewski
,
S.
Narayanan
,
S.
Ramakrishnan
,
R. L.
Leheny
, and
J. L.
Harden
, “
Echoes in x-ray speckles track nanometer-scale plastic events in colloidal gels under shear
,”
Phys. Rev. E
90
,
062310
(
2014
).
85.
N.
Ali
,
D. C. D.
Roux
,
L.
Cipelletti
, and
F.
Caton
, “
RheoSpeckle: A new tool to investigate local flow and microscopic dynamics of soft matter under shear
,”
Meas. Sci. Technol.
27
,
125902
(
2016
).
86.
E.
Tamborini
and
L.
Cipelletti
, “
Multiangle static and dynamic light scattering in the intermediate scattering angle range
,”
Rev. Sci. Instrum.
83
,
093106
(
2012
).
87.
P. T.
Tokumaru
and
P. E.
Dimotakis
, “
Image correlation velocimetry
,”
Exp. Fluids
19
,
1
15
(
1995
).
88.
V.
Viasnoff
,
F.
Lequeux
, and
D. J.
Pine
, “
Multispeckle diffusing-wave spectroscopy: A tool to study slow relaxation and time-dependent dynamics
,”
Rev. Sci. Instrum.
73
,
2336
2344
(
2002
).
89.
J.
Rodríguez-López
,
L.
Elvira
,
F.
Montero de Espinosa Freijo
, and
J.
de Vicente
, “
Using ultrasounds for the estimation of the misalignment in plate–plate torsional rheometry
,”
J. Phys. D: Appl. Phys.
46
,
205301
(
2013
).
90.
E.
Gutierrez
and
A.
Groisman
, “
Measurements of elastic moduli of silicone gel substrates with a microfluidic device
,”
PLoS One
6
,
e25534
(
2011
).
91.
E.
Michel
,
M.
Filali
,
R.
Aznar
,
G.
Porte
, and
J.
Appell
, “
Percolation in a model transient network: Rheology and dynamic light scattering
,”
Langmuir
16
,
8702
8711
(
2000
).
92.
A.
Duri
,
H.
Bissig
,
V.
Trappe
, and
L.
Cipelletti
, “
Time-resolved-correlation measurements of temporally heterogeneous dynamics
,”
Phys. Rev. E
72
,
051401-1
051401-17
(
2005
).
93.
S.
Aime
and
L.
Cipelletti
Probing shear-induced rearrangements in Fourier Space. I. Dynamic Light Scattering
” (unpublished).
94.
A.
Philippe
,
S.
Aime
,
V.
Roger
,
R.
Jelinek
,
G.
Prvot
,
L.
Berthier
, and
L.
Cipelletti
, “
An efficient scheme for sampling fast dynamics at a low average data acquisition rate
,”
J. Phys.: Condens. Matter
28
,
075201
(
2016
).
You do not currently have access to this content.