Streamer discharges are efficient non-thermal plasmas for air purification and can be generated in wire-cylinder electrode structures (the plasma reactor). When (sub)nanosecond high-voltage pulses are used to generate the plasma, components like a plasma reactor behave as transmission lines, where transmission times and reflections become important. We want to visually study the influence of these transmission-line effects on the streamer development in the reactor. Therefore, we need a unique experimental setup, which allows us to image the streamers with nanosecond time resolution over the entire length of the plasma reactor. This paper describes the setup we developed for this purpose. The setup consists of a large frame in which a specially designed plasma reactor can be mounted and imaged from below by an intensified charge-coupled device (ICCD) camera. This camera is mounted on a platform which can be moved by a stepper motor. A computer automates all the experiments and controls the camera movement, camera settings, and the nanosecond high-voltage pulse source we use for the experiments. With the automated setup, we can make ICCD images of the entire plasma reactor at different instances of time with nanosecond resolution (with a jitter of less than several hundreds of picoseconds). Consequently, parameters such as the streamer length and width can be calculated automatically.

1.
T.
Huiskamp
,
S. J.
Voeten
,
E. J. M.
van Heesch
, and
A. J. M.
Pemen
, “
Design of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source
,”
IEEE Trans. Plasma Sci.
42
,
127
137
(
2014
).
2.
T.
Huiskamp
,
F. J. C. M.
Beckers
,
E. J. M.
van Heesch
, and
A. J. M.
Pemen
, “
First implementation of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source
,”
IEEE Trans. Plasma Sci.
42
,
859
867
(
2014
).
3.
T.
Huiskamp
,
E. J. M.
van Heesch
, and
A. J. M.
Pemen
, “
Final implementation of a subnanosecond rise time, variable pulse duration, variable amplitude, repetitive, high-voltage pulse source
,”
IEEE Trans. Plasma Sci.
43
,
444
451
(
2015
).
4.
T.
Huiskamp
,
F. J. C. M.
Beckers
,
E. J. M.
van Heesch
, and
A. J. M.
Pemen
, “
A solid state, 0–120 kV, microsecond pulse charger for a nanosecond pulse source
,”
IEEE Trans. Plasma Sci.
41
,
3666
3674
(
2013
).
5.
P. P. M.
Blom
, “
High-power pulsed corona
,” Ph.D. thesis,
Eindhoven University of Technology
,
1997
.
6.
T. M. P.
Briels
,
E. M.
Van Veldhuizen
, and
U.
Ebert
, “
Positive streamers in air and nitrogen of varying density: Experiments on similarity laws
,”
J. Phys. D: Appl. Phys.
41
,
234008
(
2008
).
7.
P.
Tardiveau
,
E.
Marode
, and
A.
Agneray
, “
Tracking an individual streamer branch among others in a pulsed induced discharge
,”
J. Phys. D: Appl. Phys.
35
,
2823
(
2002
).
8.
R.
Ono
and
T.
Oda
, “
Formation and structure of primary and secondary streamers in positive pulsed corona discharge-effect of oxygen concentration and applied voltage
,”
J. Phys. D: Appl. Phys.
36
,
1952
(
2003
).
9.
G. J. J.
Winands
,
Z.
Liu
,
A. J. M.
Pemen
,
E. J. M.
Van Heesch
, and
K.
Yan
, “
Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography
,”
J. Phys. D: Appl. Phys.
41
,
234001
(
2008
).
10.
L.
Zhao
,
Z. Y.
Luo
,
J. Y.
Xuan
,
J. P.
Jiang
,
X.
Gao
, and
K. F.
Cen
, “
Study of geometry structure on a wire–plate pulsed corona discharge reactor
,”
IEEE Trans. Plasma Sci.
40
,
802
810
(
2012
).
11.
A. V.
Krasnochub
,
M. M.
Nudnova
, and
A. Y.
Starikovskii
, “
Cathode-directed streamer development in air at different pressures
,” AIAA Paper 2005-203 (
2005
).
12.
S.
Nijdam
,
F. M. J. H.
Van De Wetering
,
R.
Blanc
,
E. M.
Van Veldhuizen
, and
U.
Ebert
, “
Probing photo-ionization: Experiments on positive streamers in pure gases and mixtures
,”
J. Phys. D: Appl. Phys.
43
,
145204
(
2010
).
13.
T. M. P.
Briels
,
J.
Kos
,
G. J. J.
Winands
,
E. M.
Van Veldhuizen
, and
U.
Ebert
, “
Positive and negative streamers in ambient air: Measuring diameter, velocity and dissipated energy
,”
J. Phys. D: Appl. Phys.
41
,
234004
(
2008
).
14.
T.
Namihira
,
D.
Wang
,
S.
Katsuki
,
R.
Hackam
, and
H.
Akiyama
, “
Propagation velocity of pulsed streamer discharges in atmospheric air
,”
IEEE Trans. Plasma Sci.
31
,
1091
1094
(
2003
).
15.
D.
Wang
,
M.
Jikuya
,
S.
Yoshida
,
T.
Namihira
,
S.
Katsuki
, and
H.
Akiyama
, “
Positive-and negative-pulsed streamer discharges generated by a 100-ns pulsed-power in atmospheric air
,”
IEEE Trans. Plasma Sci.
35
,
1098
1103
(
2007
).
16.
H.-H.
Kim
, “
Nonthermal plasma processing for air-pollution control: A historical review, current issues, and future prospects
,”
Plasma Processes Polym.
1
,
91
110
(
2004
).
17.
A.
Fridman
,
A.
Chirokov
, and
A.
Gutsol
, “
Non-thermal atmospheric pressure discharges
,”
J. Phys. D: Appl. Phys.
38
,
R1
(
2005
).
18.
S.
Samukawa
,
M.
Hori
,
S.
Rauf
,
K.
Tachibana
,
P.
Bruggeman
,
G.
Kroesen
,
J. C.
Whitehead
,
A. B.
Murphy
,
A. F.
Gutsol
,
S.
Starikovskaia
,
U.
Kortshagen
,
J.
Boeuf
,
T. J.
Sommerer
,
M. J.
Kushner
,
U.
Czarnetzki
, and
N.
Mason
, “
The 2012 plasma roadmap
,”
J. Phys. D: Appl. Phys.
45
,
253001
(
2012
).
19.
T.
Huiskamp
, “
Nanosecond pulsed power technology for transient plasma generation
,” Ph.D. thesis,
Eindhoven University of Technology
,
2015
, available online: https://pure.tue.nl/ws/files/3809268/798746.pdf.
20.
E. J. M.
van Heesch
,
G. J. J.
Winands
, and
A. J. M.
Pemen
, “
Evaluation of pulsed streamer corona experiments to determine the O radical yield
,”
J. Phys. D: Appl. Phys.
41
,
234015
(
2008
).
21.
T.
Matsumoto
,
D.
Wang
,
T.
Namihira
, and
H.
Akiyama
, “
Energy efficiency improvement of nitric oxide treatment using nanosecond pulsed discharge
,”
IEEE Trans. Plasma Sci.
38
,
2639
2643
(
2010
).
22.
D.
Wang
,
T.
Namihira
, and
H.
Akiyama
, “
Recent progress of nano-seconds pulsed discharge and its applications
,”
J. Adv. Oxid. Technol.
14
,
131
137
(
2011
).
23.
T.
Matsumoto
,
D.
Wang
,
T.
Namihira
, and
H.
Akiyama
, “
Process performances of 2 ns pulsed discharge plasma
,”
Jpn. J. Appl. Phys., Part 1
50
,
08JF14
(
2011
).
24.
M.
Fujiwara
, “
Short-pulse discharge for simultaneous pursuit of energy and volume-efficient NOx removal
,”
Jpn. J. Appl. Phys., Part 1
45
,
948
(
2006
).
25.
T.
Kakuta
,
I.
Yagi
, and
K.
Takaki
, “
Improvement of deoxidization efficiency of nitric monoxide by shortening pulse width of semiconductor opening switch pulse power generator
,”
Jpn. J. Appl. Phys., Part 1
54
,
01AG02
(
2015
).
26.
R.
Ono
,
Y.
Nakagawa
, and
T.
Oda
, “
Effect of pulse width on the production of radicals and excited species in a pulsed positive corona discharge
,”
J. Phys. D: Appl. Phys.
44
,
485201
(
2011
).
27.
T.
Namihira
,
S.
Tsukamoto
,
D.
Wang
,
S.
Katsuki
,
R.
Hackam
,
H.
Akiyama
,
Y.
Uchida
, and
M.
Koike
, “
Improvement of NOx removal efficiency using short-width pulsed power
,”
IEEE Trans. Plasma Sci.
28
,
434
442
(
2000
).
28.
T.
Huiskamp
,
F. J. C. M.
Beckers
,
E. J. M.
van Heesch
, and
A. J. M.
Pemen
, “
B-dot and d-dot sensors for (sub)nanosecond high-voltage and high-current pulse measurements
,”
IEEE Sens. J.
16
,
3792
3801
(
2016
).
29.
T.
Huiskamp
,
F. J. C. M.
Beckers
,
W. F. L. M.
Hoeben
,
E. J. M.
van Heesch
, and
A. J. M.
Pemen
, “
Matching a (sub)nanosecond pulse source to a corona plasma reactor
,”
Plasma Sources Sci. Technol.
25
,
054006
(
2016
).

Supplementary Material

You do not currently have access to this content.